Треугольник вписан в окружность как найти радиус

Все формулы для радиуса вписанной окружности

Радиус вписанной окружности в треугольник

a , b , c — стороны треугольника

p — полупериметр, p=( a + b + c )/2

Формула радиуса вписанной окружности в треугольник ( r ):

Радиус вписанной окружности в равносторонний треугольник

a — сторона треугольника

r — радиус вписанной окружности

Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):

Радиус вписанной окружности равнобедренный треугольник

1. Формулы радиуса вписанной окружности если известны: стороны и угол

a — равные стороны равнобедренного треугольника

b — сторона ( основание)

α — угол при основании

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через стороны ( r ) :

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол ( r ) :

2. Формулы радиуса вписанной окружности если известны: сторона и высота

a — равные стороны равнобедренного треугольника

b — сторона ( основание)

h — высота

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту ( r ) :

Треугольник вписанный в окружность

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = frac<1><2>ab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Радиус вписанной в треугольник окружности онлайн

С помощю этого онлайн калькулятора можно найти радиус вписанной в треугольник окружности. Для нахождения радиуса вписанной в треугольник окружности введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Открыть онлайн калькулятор

1. Радиус вписанной в треугольник окружности, если известна площадь и полупериметр треуольника

Пусть известна площадь S треугольника и полупериметр

( small p=frac<large a+b+c> <large 2 >) (1)

где a, b, c стороны треугольника (Рис.1).

Найдем радиус вписанной в треугольник окружности r.

Из центра O вписанной в треугольник окружности проведем перпендикуляры к сторонам треугольника. Все эти перпендикуляры равны радиусу r вписанной в треугольник окружности (Рис.2).

Прямыми OA, OB, OC разделим треугольник ABC на три треугольника: AOC, COB, AOB. Найдем площадь треугольников AOC, COB, AOB:

( small S_=frac<large 1> <large 2>cdot r cdot b ,) ( small S_=frac<large 1> <large 2>cdot r cdot c, ) ( small S_=frac<large 1> <large 2>cdot r cdot a ) (2)
( small S=S_+S_+S_)( small =frac<large 1> <large 2>cdot r cdot b ) ( small +frac<large 1> <large 2>cdot r cdot c ) ( small +frac<large 1> <large 2>cdot r cdot a ) ( small =frac<large 1> <large 2>cdot r cdot ( a+b+c) ) (3)
( small S=r cdot p. ) (4)

Найдем радиус r вписанной в треугольник окружности из равенства (4):

( small r=frac<large S><large p>. ) (5)

Пример 1. Известны площадь ( small S=17 ) и полупериметр ( small p=10 ) треугольника. Найти радиус вписанной в треугольник окружности.

Решение. Для нахождения радиуса вписанной в треугольник окружности воспользуемся формулой (5).

Подставим значения ( small S=17 ) и ( small p=10 ) в (5):

Ответ:

2. Радиус вписанной в треугольник окружности, если известны все три стороны треугольника

Пусть известны три стороны треугольника: a, b, c. Найдем радиус вписанной в треугольник окружности (Рис.3).

Площадь треугольника по трем сторонам вычисляется из формулы:

(6)

где полупериметр p вычисляется из формулы (1).

Подставляя (6) в (5), получим формулу радиуса вписанной в треугольник окружности:

( small r=sqrt<frac<large (p-a)(p-b)(p-c)><large p>>, ) (7)

Пример 2. Известны стороны треугольника: ( small a=15 ,; b=7, ; c=9.) Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанный в треугольник найдем сначала полупериметр треугольника из формулы (1):

Подставим значения ( small a,; b, ; c, ; p ) в (7):

Ответ:

3. Радиус вписанной в треугольник окружности, если известны две стороны и угол между ними

Пусть известны стороны b и c треугольника и угол A между ними (Рис.4). Найдем формулу радиуса вписанной в треугольник окружности.

Из теоремы косинусов найдем сторону a треугольника:

(8)

Далее, для вычисления радиуса вписанной в треугольник окружности, воспользуемся формулой (7), где полупериметр p вычисляется из (1).

Пример 3. Известны стороны треугольника: ( small b=9 ,; c=7, ; ) и угол меджу ними A=30°. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанный в треугольник найдем сначала сторону a треугольника из формулы (8):

Далее найдем p из формулы (1):

Подставим значения ( small a,; b, ; c, ; p ) в (7):

Ответ:

4. Радиус вписанной в треугольник окружности, если известны сторона и прилежащие два угла

Пусть известны сторона a треугольника и прилежащие два угла B и C (Рис.5). Найдем радиус вписанной в треугольник окружности.

(9)

Поскольку сумма углов треугольника равна 180°, то имеем ( small angle A=180°-(angle B+angle C). ) Из формул приведения тригонометрических функций имеем: ( small sin A=sin (180°-( B+ C)) ) ( small =sin (B+C). ) Тогда формулы (9) можно переписать так:

(10)

Получая значения сторон b, c из (10) и значение p из (1), можно найди радиус вписанной в треугольник окружности из формулы (7). Таким образом, для нахождения радиуса вписанной в треугольник окружности через сторону и прилежащим двум углам применяется формула

(11)
(12)
, (13)
. (14)

Пример 4. Сторона треугольника равена: ( small a=7 ,) а прилежащие два угла равны соответственно ( small angle B=25°, ) ( small angle C=40°, ) Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (11). Найдем, сначала, стороны b и c из формул (12),(13). Подставим значения ( small a=7 ,) ( small angle B=25°, ) ( small angle C=40°, ) в (12) и (13):

.

Далее найдем полупериметр p из формулы (14):

Подставляя значения a, b, c, p в (11), получим:

Ответ:

источники:

http://colibrus.ru/treugolnik-vpisannyy-v-okruzhnost/

http://matworld.ru/geometry/radius-vpisannoj-v-treugolnik-okruzhnosti.php

Окружность, описанная около треугольника

Окружность называют описанной около треугольника, если все вершины треугольника расположены на окружности.

Её центр равноудалён от всех вершин, то есть должен находиться в точке пересечения серединных перпендикуляров к сторонам треугольника.

Следовательно, около любого треугольника можно описать окружность, так как серединные перпендикуляры к сторонам пересекаются в одной точке.

Trijst_vidusp_01.png

Для остроугольного треугольника центр окружности находится в треугольнике.

Другая ситуация с прямоугольным и тупоугольным треугольниками.

Trijst_vidusp21.png              Trijst_vidusp11.png

Окружность, вписанная в треугольник

Окружность называют вписанной в треугольник, если все стороны треугольника касаются окружности.

Её центр равноудалён от всех сторон, то есть должен находиться в точке пересечения биссектрис треугольника.

Следовательно, в любой треугольник можно вписать окружность, так как биссектрисы треугольника пересекаются в одной точке.

Trijst_bisektrises_01.png

Так как биссектрисы углов треугольника всегда пересекаются внутри треугольника, то для всех треугольников центр вписанной окружности находится в треугольниках.

Равносторонний треугольник

Обрати внимание!

У равностороннего треугольника совпадают биссектрисы, медианы и высоты, то есть, эти отрезки являются также серединными перпендикулярами. Это значит, что центры описанной и вписанной окружности совпадают.

Радиус описанной окружности

Радиус вписанной окружности

r=13h

, где (h) — высота треугольника.

Если дана сторона треугольника (a), то

h=a32

.

Поэтому

r=a36

.

Прямоугольный треугольник

Радиус описанной окружности

R=12c

, где (c) — гипотенуза.

Радиус вписанной окружности

r=SΔp

, где (p) — полупериметр.

Произвольный треугольник

Радиус описанной окружности

R=a2sinα

, где

α

 — угол, противолежащий стороне (a);

еслиSΔ=abc4R,тоR=abc4SΔ;еслиSΔ=p⋅r,тоr=SΔp

.

Радиус вписанной окружности

r=SΔp

, где (p) — полупериметр.

Как найти радиус вписанной окружности треугольника

Содержание:

  • Окружность, вписанная в треугольник — как найти радиус
  • Свойства вписанной в треугольник окружности

    • Первое свойство
    • Второе свойство
    • Третье свойство
  • Формулы вычисления радиуса вписанной окружности

    • Произвольный треугольник
    • Прямоугольный треугольник
    • Равнобедренный треугольник
    • Равносторонний треугольник
  • Как найти через высоту или стороны, примеры решения

Окружность, вписанная в треугольник — как найти радиус

Определение

Вписанной в треугольник окружностью называют такую окружность, которая занимает внутреннее пространство геометрической фигуры, соприкасаясь со всеми ее сторонами.

В таком случае грани треугольника представляют собой касательные к этой окружности. Сама геометрическая фигура с тремя углами считается описанной вокруг рассматриваемой окружности.

Вписанная окружность

Источник: people-ask.ru

Свойства вписанной в треугольник окружности

Окружность, которую вписали в треугольник, обладает определенными свойствами. Основные из них можно записать таким образом:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

  1. Центр окружности, которую вписали в треугольник, совпадает с точкой пересечения биссектрис этой геометрической фигуры.
  2. Во внутреннее пространство любого треугольника можно вписать лишь одну окружность.
  3. Формула радиуса окружности, который вписали во многоугольник с тремя углами, будет иметь такой вид:

Радиус

Источник: people-ask.ru

В представленной формуле радиуса окружности использованы следующие величины:

  • S – является площадью треугольника;
  • р – представляет собой полупериметр геометрической фигуры;
  • a, b, c – являются сторонами треугольника.

Перечисленные свойства необходимо доказать.

Первое свойство

Требуется доказать, что центр окружности, которую вписали в фигуру с тремя углами, совпадает с точкой пересечения биссектрис.

Доказательство построено в несколько этапов:

  1. Необходимо опустить из центральной точки окружности перпендикулярные прямые OL, OK и OM, которые опускаются на стороны треугольника АВС. Из вершин треугольника следует провести прямые, соединяющие их с центром фигуры OA, OC и OB.

3 Доказательство

Источник: people-ask.ru
  1. Далее можно рассмотреть пару треугольников AOM и AOK. Можно отметить, что они являются прямоугольными, так как OM и OK являются перпендикулярами к сторонам AC и AB. Гипотенуза OA является общей для пары этих фигур.
  2. Исходя из того, что касательная к окружности является перпендикуляром к радиусу, который проведен в точку касания, согласно свойству касательной к окружности, то катеты OМ и OК представляют собой радиусы окружности и, следовательно, равны.
  3. Согласно полученным утверждениям, можно сделать вывод о равенстве прямоугольных треугольников AOМ и AOК по гипотенузе и катету. Таким образом, углы OAМ и OAК тоже равны. Получается, что OA является биссектрисой угла BAC.
  4. Аналогично можно доказать, что OC является биссектрисой угла ACB, а OB – биссектрисой угла ABC.
  5. Таким образом, биссектрисы треугольника совпадают в одной точке, которая представляет собой центр вписанной окружности.

Данное свойство окружности доказано.

Второе свойство

Необходимо представить доказательства свойства окружности, согласно которому в любой треугольник можно вписать окружность, причем только одну.

Доказательство состоит из нескольких этапов:

  1. Окружность получится вписать в треугольник в том случае, когда существует точка, удаленная на равные расстояния от сторон геометрической фигуры.
  2. Можно построить пару биссектрис ОА и ОС. Из точки, в которой они пересекаются, необходимо опустить перпендикулярные прямые OK, OL и OM ко всем граням многоугольника с тремя углами ABC.

4 Второе свойство

Источник: people-ask.ru
  1. Затем следует рассмотреть пару треугольников AOK и AOM.
  2. Эти фигуры обладают общей гипотенузой АО. Углы OAK и OAM равны, так как OA является биссектрисой угла KAM. Углы OKA и OMA прямые, то есть также равны, так как OK и OM являются перпендикулярами к сторонам AB и AC.
  3. Исходя из того, что две пары углов равны, можно сделать вывод о равенстве третьей пары AOM и AOK.
  4. Таким образом, получилось подтвердить равенство треугольников AOK и AOM по стороне AO и двум углам, которые к ней прилегают.

5 Второе свойство

Источник: people-ask.ru
  1. Удалось определить равенство сторон ОМ и ОК, то есть они удалены на одинаковое расстояние от сторон геометрической фигуры АС и АВ.
  2. Аналогично можно доказать, что OM и OL равны, то есть равноудалены от граней AC и BC.
  3. Таким образом, точка равноудалена от сторон треугольника, что делает ее центром окружности, которая вписана в этот многоугольник.
  4. Аналогичным способом можно определить точку во внутреннем пространстве любой геометрической фигуры с тремя углами, которая будет удалена на равные расстояния от его сторон, и представляет собой центр окружности, вписанной в этот треугольник.
  5. Исходя из вышесказанного, можно сделать вывод о том, что в любой треугольник можно вписать окружность.
  6. Необходимо заметить, что центральная точка окружности совпадает с точкой, в которой пересекаются биссектрисы треугольника.
  7. Можно допустить ситуацию, при которой в геометрическую фигуру с тремя углами можно вписать две и более окружности.
  8. Необходимо провести три прямые из вершин геометрической фигуры к центральной точке окружности, вписанной в нее, и опустить перпендикулярные прямые к каждой грани треугольника. Таким образом, будет доказано, что рассматриваемая окружность лежит на пересечении биссектрис треугольника, согласно доказательству ее первого свойства.
  9. Получим совпадение центральной точки окружности и центра первой окружности, которая уже была вписана в этот треугольник, а ее радиус соответствует перпендикуляру, опущенному на сторону треугольника так же, как и в первом случае. Можно сделать вывод о совпадении этих окружностей.
  10. Аналогично любая другая окружность, вписанная в геометрическую фигуру с тремя углами, будет совпадать с первой окружностью.
  11. Таким образом, в треугольник получается вписать лишь одну окружность.

Свойство доказано.

Третье свойство

Требуется доказать, что радиус окружности, которую вписали в геометрическую фигуру с тремя углами, представляет собой отношение площади треугольника к полупериметру:

6 Формула

Источник: people-ask.ru

Кроме того, необходимо представить доказательства следующему равенству:

7 Формула

Источник: people-ask.ru

Доказательство:

8 Треугольник

Источник: people-ask.ru
  1. Следует рассмотреть произвольный треугольник АВС, стороны которого соответствуют a, b и c. Для расчета полупериметра данного треугольника целесообразно использовать формулу:

9 Формула

Источник: people-ask.ru
  1. Центральная точка окружности совпадает с точкой пересечения биссектрис геометрической фигуры с тремя углами. Прямые OA, OB и OC, которые соединяют O с вершинами треугольника АВС, разделяют геометрическую фигуру на три части: AOC, COB, BOA. Площадь треугольника ABC представляет собой сумму площадей этих трех частей.

10 Формула

Источник: people-ask.ru
  1. Исходя из того, что площадь какого-либо треугольника представляет собой половину произведения его основания на высоту, а высота треугольников AOC, COB, BOA рассчитывается, как радиус окружности r, то площади треугольников AOC, COB и BOA можно определить по формулам:

11 Формула

Источник: people-ask.ru
  1. Далее необходимо представить площадь S геометрической фигуры АВС, как сумму площадей нескольких треугольников:

12 Формула

Источник: people-ask.ru
  1. Следует отметить, что второй множитель является полупериметром геометрической фигуры с тремя углами АВС, что можно записать в виде равенства:

13 Формула

Источник: people-ask.ru

14 Формула

Источник: people-ask.ru
  1. Таким образом, доказано равенство радиуса вписанной окружности и отношения площади треугольника к полупериметру.
  2. Можно записать формулу Герона, смысл которой заключается в следующем: площадь треугольника (S) равняется квадратному корню из произведения его полупериметра (p) на разности полупериметра и каждой из его сторон (a, b, c)

15 Формула

Источник: people-ask.ru
  1. Далее следует преобразовать формулу для расчета радиуса:

16 Формула

Источник: people-ask.ru

Свойство окружности доказано.

Формулы вычисления радиуса вписанной окружности

Параметры окружности, которую вписали в геометрическую фигуру с тремя углами, можно рассчитать с помощью стандартных формул. Радиус окружности будет определен в зависимости от типа треугольника.

Произвольный треугольник

Определить радиус окружности, которая вписана в какой-либо треугольник, можно, как удвоенную площадь треугольника, поделенную на его периметр.

17 Формула

Источник: microexcel.ru

В данном случае, a, b, c являются сторонами геометрической фигуры с тремя углами, S – ее площадь.

Прямоугольный треугольник

Радиус окружности, которую вписали в треугольник с прямым углом, представляет собой дробь с числителем в виде суммы катетов за минусом гипотезы и знаменателем, равным числу 2.

18 Формула

Источник: microexcel.ru

В формуле a и b являются катетами, c – гипотенузой треугольника.

Равнобедренный треугольник

Радиус окружности, которая вписана в равнобедренный треугольник, определяют по формуле:

19 Формула

Источник: microexcel.ru

В этом случае a – боковые стороны, b – основание треугольника.

Равносторонний треугольник

Расчет радиуса окружности, которая вписана в правильный или равносторонний треугольник, выполняют по формуле:

20 Формула

Источник: microexcel.ru

где a – сторона геометрической фигуры с тремя углами.

Как найти через высоту или стороны, примеры решения

Задача 1

Имеется геометрическая фигура с тремя углами, стороны которой составляют 5, 7 и 10 см. Требуется определить радиус окружности, которая вписана в этот треугольник.

Решение

В первую очередь необходимо определить, какова площадь треугольника. Для этого можно воспользоваться формулой Герона:

21 Формула

Источник: microexcel.ru

Затем применим формулу для расчета радиуса круга:

22 Формула

Источник: microexcel.ru

Ответ: радиус окружности составляет примерно 1,48 см.

Задача 2

Необходимо рассчитать радиус окружности, которая вписана в равнобедренный треугольник. Боковые стороны геометрической фигуры составляют 16 см, а основание равно 7 см.

Решение

Следует использовать подходящую формулу для расчета радиуса, подставив в нее известные величины:

23 Формула

Источник: microexcel.ru

Ответ: радиус окружности примерно равен 2,8 см.

Содержание

  1. Определение
  2. Формулы
  3. Радиус вписанной окружности в треугольник
  4. Радиус описанной окружности около треугольника
  5. Площадь треугольника
  6. Периметр треугольника
  7. Сторона треугольника
  8. Средняя линия треугольника
  9. Высота треугольника
  10. Свойства
  11. Доказательство

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — не диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Треугольник вписанный в окружность

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

    [ r = frac{S}{(a+b+c)/2} ]

  2. Радиус вписанной окружности в треугольник,
    если известны площадь и периметр:

    [ r = frac{S}{frac{1}{2}P} ]

  3. Радиус вписанной окружности в треугольник,
    если известны полупериметр и все стороны:

    [ r = sqrt{frac{(p-a)(p-b)(p-c)}{p}} ]

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

    [ R = frac{AC}{2 sin angle B} ]

  2. Радиус описанной окружности около треугольника,
    если известны все стороны и площадь:

    [ R = frac{abc}{4S} ]

  3. Радиус описанной окружности около треугольника,
    если известны
    все стороны и полупериметр:

    [ R = frac{abc}{4sqrt{p(p-a)(p-b)(p-c)}} ]

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

    [ S = pr ]

  2. Площадь треугольника вписанного в окружность,
    если известен полупериметр:

    [ S = sqrt{p(p-a)(p-b)(p-c)} ]

  3. Площадь треугольника вписанного в окружность,
    если известен высота и основание:

    [ S = frac{1}2 ah ]

  4. Площадь треугольника вписанного в окружность,
    если известна сторона и два прилежащих к ней угла:

    [ S = frac{a^2}{2cdot (sin(α)⋅sin(β)) : sin(180 — (α + β))} ]

  5. Площадь треугольника вписанного в окружность,
    если известны две стороны и синус угла между ними:

    [ S = frac{1}{2}ab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1.  Периметр треугольника вписанного в окружность,
    если известны все стороны:

    [ P = a + b + c ]

  2. Периметр треугольника вписанного в окружность,
    если известна площадь и радиус вписанной окружности:

    [ P = frac{2S}{r} ]

  3. Периметр треугольника вписанного в окружность,
    если известны две стороны и угол между ними:

    [ P = sqrt{ b2 + с2 — 2 * b * с * cosα} + (b + с) ]

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

    [ a = sqrt{b^2+c^2 -2bc cdot cos alpha} ]

  2. Сторона треугольника вписанного в
    окружность, если известна сторона и два угла:

    [ a = frac{b · sin alpha }{sin β} ]

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

    [ l = frac{AB}{2} ]

  2. Средняя линия треугольника вписанного в окружность,
    если известны две стороны, ни одна из них не является
    основанием, и косинус угла между ними:

    [ l = frac{sqrt{b^2+c^2-2bc cdot cos alpha}}{2} ]

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

    [ h = frac{2S}{a} ]

  2. Высота треугольника вписанного в окружность,
    если известен сторона и синус угла прилежащего
    к этой стороне, и находящегося напротив высоты:

    [ h = b cdot sin alpha ]

  3. Высота треугольника вписанного в окружность,
    если известен радиус описанной окружности и
    две стороны, ни одна из которых не является основанием:

    [ h = frac{bc}{2R} ]

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

около треугольника описана окружность

Дано: окружность и треугольник,
которые изображены на рисунке 2.

Доказать: окружность описана
около треугольника.

Доказательство:

  1.  Проведем серединные
    перпендикуляры — HO, FO, EO.
  2.  O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

Следовательно: окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Содержание

Треугольник и окружность

Вписанная окружность

В каждый треугольник можно вписать окружность, притом только одну.

Центр окружности, вписанной в треугольник — точка пересечения биссектрис треугольника.
Вписанная окружность

Радиус вписанной в треугольник окружности равен отношению его площади к полупериметру [верно также для многоугольника]

$$ r = frac{S}{p}$$

Радиус вписанной в прямоугольный треугольник с катетами a, b и гипотенузой c окружности равен
$$r = frac{a+b-c}{2}$$
(для доказательства использовать формулу площади и теорему Пифагора)

Описанная окружность

Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

Около треугольника можно описать окружность, притом только одну.

Центр окружности, описанной вокруг треугольника — точка пересечения серединных перпендикуляров треугольника.

У остроугольного треугольника центр описанной окружности лежит внутри треугольника, у тупоугольного — вне треугольника, у прямоугольного — на середине гипотенузы.

Радиус описанной окружности:

$R = frac {abc}{4S}$

$ R = frac{a}{2sin alpha}$, где $alpha$ — угол, лежащий против стороны $a$

См. также Теорема синусов

Радиус описанной окружности по трем сторонам:

$R = frac{abc}{sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}} = frac{abc}{4sqrt{p(p-a)(p-b)(p-c)}}$

Связь радиусов

Формула Эйлера

$$R^2-2Rr=|OI|^2$$
где R — радиус описанной вокруг треугольника окружности, r — радиус вписанной в него окружности, O — центр описанной окружности, I — центр вписанной окружности.

Отношение радиусов

Треугольник имеет углы $alpha, beta, gamma$.

Найти отношение радиусов описанной и вписанной окружностей.

$$frac r R =cosalpha + cos beta + cos gamma -1$$

Предельная геометрическая интерпретация: если взять маленький кружок и описать около него очень тупоугольный треугольник, то радиус описанной окружности будет очень большим. Отношение будет стремиться к нулю с увеличением тупоугольности. Два косинуса будут стремиться к единичке, один к минус единичке, а всё выражение тоже к нулю.

$$frac{R}{r}=frac{R}{frac{2S}{a+b+c}}=frac{R(a+b+c)}{4R^2sinalphasinbetasingamma}=frac{sinalpha+sinbeta+singamma}{2sinalphasinbetasingamma}$$

См. также Формула Карно — Википедия

Пусть D — центр описанной окружности треугольника ABC. Тогда сумма расстояний от D до сторон треугольника ABC, взятых со знаком «-», когда высота из D на сторону целиком лежит вне треугольника, будет равна $R+r$, где r — радиус вписанной окружности, а R — описанной.


Учебники:
Радиус описанной окружности — Геометрия 9 класс Мерзляк, параграф 1 Решение треугольников

Понравилась статья? Поделить с друзьями:
  • Как исправить ошибку в программе ворд
  • Как найти длину вектора матрицы
  • Как составить досудебную претензию на возврат денежных средств от вайлдберриз
  • Как правильно составить доклад на совещание
  • Как найти детскую медицинскую карту взрослому человеку