Высота столбика жидкости как найти

Формула давления жидкости отличается от формулы, с помощью которой можно рассчитать давление твердого тела. Потому, что давление жидкости не зависит от площади поверхности, на которую жидкость давит.

Закон Паскаля

Французский физик, Блез Паскаль, в 1653 году сформулировал закон: «Давление, которое мы оказываем на жидкость (или газ), она без изменения передаст в любую точку и во всех направлениях».

Мы немного упростим формулировку:

Жидкость (или газ) передает давление, оказанное на нее, одинаково и без изменений во все стороны.

Это значит, что на одной и той же глубине жидкость будет одинаково давить и на дно, и на стенки сосуда.

С ростом глубины растет и давление жидкости, но в любой точке жидкость передает это давление во все стороны одинаково

Рис. 1. Чем глубже, тем больше давление жидкости, но в любой точке жидкость передает это давление одинаково во все стороны

На рисунке 1 изображен сосуд, наполненный жидкостью. Высоту столбика жидкости – то есть, глубину, отсчитываем от поверхности жидкости.

Видно, что на разных глубинах давление отличается.

[ large begin{cases} h_{1}  < h_{2} < h_{3} \ P_{1}  < P_{2} < P_{3} end{cases} ]

Чем глубже, тем больше давление жидкости. Но в любой точке оно одинаково передается во все стороны.

Формула давления жидкости

Формула, по которой можно посчитать давление жидкости:

[ large boxed{ P = rho_{text{ж}} cdot g cdot h }]

( P left(text{Па}right) )​ – давление жидкости;

( displaystyle rho_{text{ж}} left(frac{text{кг}}{text{м}^3} right) )​ – плотность жидкости;

( displaystyle g left(frac{text{м}}{c^{2}} right) )​ – ускорение свободного падения;

Для большинства школьных задач можно принимать ​( displaystyle g approx 10 left(frac{text{м}}{c^{2}} right) )​;

( h left(text{м}right) )​ – высота столбика жидкости.

В формулу для давления жидкости не входит площадь S поверхности, на которую эта жидкость давит.

Поэтому, давление жидкости не зависит от площади. А давление твердого тела рассчитывают по другой формуле.

В некоторых задачах указывают объем используемой жидкости. И иногда просят рассчитать силу давления. Чтобы получить правильный ответ для таких задач, нужно уметь переводить площади и объемы в единицы системы СИ.

Сообщающиеся сосуды

Сообщающиеся сосуды – это емкости, расположенные на плоской горизонтальной поверхности, у дна они соединяются трубками.

Если в один из сосудов начать наливать жидкость, то она будет распределяться по всем сосудам, так, что ее уровень будет одинаковым во всех сосудах (рис. 2).

Жидкость в сообщающихся сосудах находится на одинаковом уровне

Рис. 2. В сообщающихся сосудах уровень жидкости будет одинаковым

Неважно, какую форму имеет сосуд. Давление жидкости во всех сосудах будет одинаковым. Поэтому одинаковой будет высота h столбика жидкости во всех сосудах.

U-образное колено – это два сообщающихся сосуда, диаметры сосудов одинаковые.

Жидкости, которые заливают в колено, не должны смешиваться (рис. 3). Например, можно залить в оду трубку воду, а в другую — масло.

U-образное колено образовано двумя сообщающимися сосудами одинакового диаметра

Рис. 3. Два сообщающихся сосуда одинакового диаметра образуют U-образное колено

Запишем формулы для расчета давления в левом (P_{1}) и правом (P_{2}) частях колена.

[ large boxed{begin{cases} P_{1} = rho_{1} cdot g cdot h_{1} \ P_{2} = rho_{2} cdot g cdot h_{2} end{cases}} ]

Чем больше разница плотностей двух жидкостей, тем больше отличаются высоты их столбиков.

При решении задач общую нижнюю часть колена не учитываем. На рисунке 3 она отделена от верхней части горизонтальной линией.

Давление столбиков, оставшихся в верхней части, будет одинаковым.

( P_{1} ) – давление жидкости в левой части колена;

( P_{2} ) – давление жидкости в правой части колена.

[ large begin{cases} P_{1} = P_{2} \  rho_{1} cdot g cdot h_{1} = rho_{2} cdot g cdot h_{2} end{cases} ]

Обе части последнего уравнения разделим на ускорение свободно падения. Тогда получим соотношение для высот столбиков жидкости и их плотностей:

[ large boxed{ rho_{1} cdot h_{1} = rho_{2} cdot h_{2} }]

Высоты столбиков можно измерить линейкой. Зная плотность одной из жидкостей, можно найти плотность второй жидкости.

Примечание: Давление жидкостей часто измеряют в миллиметрах ртутного столба или метрах водяного столба. Переходите по ссылке, чтобы узнать, как связаны эти единицы измерения и как давление переводить в систему СИ.

Гидравлический пресс

Молекулы жидкости плотно упакованы, они прилегают друг к другу. Поэтому жидкости не сжимаемы! Это свойство жидкостей используют в гидравлическом прессе.

Гидравлический пресс – это два сообщающихся сосуда. Их называют цилиндрами. Диаметры цилиндров отличаются. Внутри каждого цилиндра вверх и вниз может свободно перемещаться поршень (рис. 4). Поршень плотно прилегает к стенкам цилиндра, чтобы жидкость из цилиндра не просачивалась наружу.

Два сообщающихся сосуда различных диаметров, по которым могут без трения перемещаться поршни, образуют гидравлический пресс

Рис. 4. Гидравлический пресс – это два сообщающихся сосуда различных диаметров, по сосудам могут без трения перемещаться поршни

Перемещаясь, поршень из цилиндра вытесняет жидкость в соседний цилиндр. Объем жидкости, вытесненной из одного цилиндра, совпадает с объемом, перешедшим в другой цилиндр, так как жидкость не проливается наружу.

[ large Delta V_{1} = Delta V_{2} ]

( Delta V_{1} left(text{м}^{3}right) )  – объем жидкости, вытесненной из первого цилиндра;

( Delta V_{2} left(text{м}^{3}right) )  – объем жидкости, перешедшей во второй цилиндр.

Из геометрии известно, объем цилиндрической фигуры можно найти по формуле:

[ large boxed{ Delta V = Delta h cdot S }]

( Delta h left(text{м}right) )  – высота столбика вытесненной жидкости;

( S left(text{м}^{2}right) )  – площадь поршня (или основания цилиндра);

Так как объемы вытесненной и перешедшей в другой цилиндр жидкостей равны, можем записать

[ large Delta h_{1} cdot S_{1} = Delta h_{2} cdot S_{2} ]

То есть, высоты столбиков отличаются во столько же раз, во сколько отличаются площади поршней.

Площадь поверхности поршня и его диаметр связаны соотношением:

[ large boxed{ S_{text{круга}} = pi cdot frac{d^{2}}{4} }]

( S left(text{м}^{2}right) )  – площадь поршня;

( d left(text{м}right) )  – диаметр поршня;

Давления в цилиндрах будут равны.

[ large P_{text{общ.лев}} = P_{text{общ.прав}} ]

Поршни в цилиндрах не двигаются – т. е. находятся в равновесии. Запишем условия равновесия для поршней:

[ large boxed{ frac{F_{1}}{S_{1}} + rho_{1} cdot g cdot h_{1} = frac{F_{2}}{S_{2}} + rho_{2} cdot g cdot h_{2} } ]

Здесь дробью вида (displaystylelarge frac{F}{S}) обозначено давление твердого тела (ссылка) — поршня.

Назовем цилиндр большого диаметра большим цилиндром, а цилиндр малого диаметра – малым. Сформулируем принцип действия гидравлического пресса:

С помощью малой силы в малом цилиндре мы можем создавать большую силу в большом цилиндре.

Как найти высоту столба жидкости, если известны плотность и давление?

  1. Володяха

    8 октября, 16:20


    +3

    Формула давления P=p*g*h

    где P — давление, p — плотность, h — высота столба жидкости, g — ускорение свободного падения (const ~ 9.8)

    Получим h = P / p*g

    • Комментировать
    • Жалоба
    • Ссылка

Найди верный ответ на вопрос ✅ «Как найти высоту столба жидкости, если известны плотность и давление? …» по предмету 📙 Физика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.

Искать другие ответы

Главная » Физика » Как найти высоту столба жидкости, если известны плотность и давление?

Статика жидкостей и газов.

  • Гидростатическое давление.

  • Закон Паскаля.

  • Гидравлический пресс.

  • Закон Архимеда.

  • Плавание тел.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: давление жидкости, закон Паскаля, закон Архимеда, условия плавания тел.

В гидро- и аэростатике рассматриваются два вопроса: 1) равновесие жидкостей и газов под действием приложенных к ним сил; 2) равновесие твёрдых тел в жидкостях и газах.

Многие из обсуждаемых далее фактов относятся равным образом как к жидкостям, так и к газам. В таких случаях мы будем называть жидкость и газ средой.

При сжатии среды в ней возникают силы упругости, называемые силами давления. Силы давления действуют между соприкасающимися слоями среды, на погружённые в среду твёрдые тела, а также на дно и стенки сосуда.

Сила давления среды обладает двумя характерными свойствами.

1. Сила давления действует перпендикулярно поверхности выделенного элемента среды или твёрдого тела. Это объясняется текучестью среды: силы упругости не возникают в ней при относительном сдвиге слоёв, поэтому отсутствуют силы упругости, касательные к поверхности.

2. Cила давления равномерно распределена по той поверхности, на которую она действует.

Естественной величиной, возникающей в процессе изучения сил давления среды, является давление.

Пусть на поверхность площади S действует сила F, которая перпендикулярна поверхности и равномерно распределена по ней. Давлением называется величина

p=frac{displaystyle F}{displaystyle S}.

Единицей измерения давления служит паскаль (Па). 1 Па — это давление, производимое силой 1 Н на поверхность площадью 1 м ^{2}.

Полезно помнить приближённое значение нормального атмосферного давления: p_{0}=10^{5}Па.

к оглавлению ▴

Гидростатическое давление.

Гидростатическим называется давление неподвижной жидкости, вызванное силой тяжести. Найдём формулу для гидростатического давления столба жидкости.

Предположим, что в сосуд с площадью дна S налита жидкость до высоты h (рис. 1). Плотность жидкости равна rho

Рис. 1. Гидростатическое давление

Объём жидкости равен Sh, поэтому масса жидкости m=rho Sh. Сила F давления жидкости на дно сосуда — это вес жидкости. Так как жидкость неподвижна, её вес равен силе тяжести:

F=mg=rho Shg.

Разделив силу F на площадь S, получим давление жидкости:

p=rho gh.

Это и есть формула гидростатического давления.

Так, на глубине 10 м вода оказывает давление p=1000 cdot 10 cdot 9,8=98000Па, примерно равное атмосферному. Можно сказать, что атмосферное давление приблизительно равно 10 м водного столба.

Для практики столь большая высота столба жидкости неудобна, и реальные жидкостные манометры — ртутные. Посмотрим, какую высоту должен иметь столб ртути (rho=13600 кг/м^{3}), чтобы создать аналогичное давление:

h=frac{p}{rho g}=frac{10^{5}}{13600cdot 9,8}=0.75 м = 750 мм.

Вот почему для измерения атмосферного давления широко используется миллиметр ртутного столба (мм рт. ст.).

к оглавлению ▴

Закон Паскаля.

Если поставить гвоздь вертикально и ударить по нему молотком, то гвоздь передаст действие молотка по вертикали, но не вбок. Твёрдые тела из-за наличия кристаллической решётки передают производимое на них давление только в направлении действия силы.

Жидкости и газы (напомним, что мы называем их средами) ведут себя иначе. В средах справедлив закон Паскаля.

Закон Паскаля. Давление, оказываемое на жидкость или газ, передаётся в любую точку этой среды без изменения по всем направлениям.

(В частности, на площадку, помещённую внутри жидкости на фиксированной глубине, действует одна и та же сила давления, как эту площадку ни поворачивай.)

Например, ныряльщик на глубине h испытывает давление p=p_{0}+rho gh. Почему? Согласно закону Паскаля вода передаёт давление атмосферы p_{0} без изменения на глубину h , где оно прибавляется к гидростатическому давлению водяного столба rho gh.

Отличной иллюстрацией закона Паскаля служит опыт с шаром Паскаля. Это шар с множеством отверстий, соединённый с цилиндрическим сосудом (рис. 2)

Рис. 2. Шар Паскаля

Если налить в сосуд воду и двинуть поршень, то вода брызнет из всех отверстий. Это как раз и означает, что вода передаёт внешнее давление по всем направлениям.

То же самое наблюдается и для газа: если сосуд наполнить дымом, то при движении поршня струйки дыма пойдут опять-таки из всех отверстий сразу. Стало быть, газ также передаёт давление по всем направлениям.

Вы ежедневно пользуетесь законом Паскаля, когда выдавливаете зубную пасту из тюбика. А именно, вы сжимаете тюбик в поперечном направлении, а паста двигается перпендикулярно вашему усилию — в продольном направлении. Почему? Ваше давление передаётся внутри тюбика по всем направлениям, в частности — в сторону отверстия тюбика. Туда-то паста и выходит.

к оглавлению ▴

Гидравлический пресс.

Гидравлический пресс — это устройство, дающее выигрыш в силе. То есть, прикладывая сравнительно небольшую силу в одном месте устройства, оказывается возможным получить значительно большее усилие в другом его месте.

Гидравлический пресс изображён на рис. 3. Он состоит из двух сообщающихся сосудов, имеющих разную площадь поперечного сечения и закрытых поршнями. В сосудах между поршнями находится жидкость.

Рис. 3. Гидравлический пресс

Принцип действия гидравлического пресса очень прост и основан на законе Паскаля.

Пусть S_{1} — площадь малого поршня, S_{2} — площадь большого поршня. Надавим на малый
поршень с силой F_{1}. Тогда под малым поршнем в жидкости возникнет давление:

p=frac{displaystyle F_{displaystyle 1}}{displaystyle S_{displaystyle 1}}.

Согласно закону Паскаля это давление будет передано без изменения по всем направлениям в любую точку жидкости, в частности — под большой поршень. Следовательно, на большой поршень со стороны жидкости будет действовать сила:

F_{displaystyle 2}=pS_{displaystyle 2}=F_{displaystyle 1}frac{displaystyle S_{displaystyle 2}}{displaystyle S_{displaystyle 1}}.

Полученное соотношение можно переписать и так:

frac{displaystyle F_{displaystyle 2}}{displaystyle F_{displaystyle 1}}=frac{displaystyle S_{displaystyle 2}}{displaystyle S_{displaystyle 1}}.

Мы видим, что F_{2} больше F_{1} во столько раз, во сколько S_{2} больше S_{1}. Например, если площадь большого поршня в 100 раз превышает площадь малого поршня, то усилие на большом поршне окажется в 100 раз больше усилия на малом поршне. Вот каким образом гидравлический пресс даёт выигрыш в силе.

к оглавлению ▴

Закон Архимеда.

Мы знаем, что дерево в воде не тонет. Следовательно, сила тяжести уравновешивается какой-то другой силой, действующей на кусок дерева со стороны воды вертикально вверх. Эта сила называется
выталкивающей или архимедовой силой. Она действует на всякое тело, погружённое в жидкость или газ.

Выясним причину возникновения архимедовой силы. Рассмотрим цилиндр площадью поперечного сечения S и высотой h, погружённый в жидкость плотности rho . Основания цилиндра горизонтальны. Верхнее основание находится на глубине h_{1} , нижнее — на глубине h_{2}=h_{1}+h (рис. 4).

На боковую поверхность цилиндра действуют силы давления, которые приводят лишь к сжатию цилиндра. Эти силы можно не принимать во внимание.

На уровне верхнего основания цилиндра давление жидкости равно p_{1}=rho g h_{1}. На верхнее основание действует сила давления F_{1}=p_{1}S=rho g h_{1}S, направленная вертикально вниз.

На уровне нижнего основания цилиндра давление жидкости равно p_{2}=rho g h_{2}. На нижнее основание действует сила давления F_{2}=p_{2}S=rho g h_{2}S, направленная вертикально вверх (закон Паскаля!).

Так как h_{2}>h_{1}, то F_{2}>F_{1}, и поэтому возникает равнодействующая сил давления, направленная вверх. Это и есть архимедова сила F_{A}. Имеем:

F_{A}=F_{2}-F_{1}=rho g h_{2}S-rho g h_{1}S=rho g S(h_{2}-h_{1})=rho gSh.

Но произведение Sh равно объёму цилиндра V. Получаем окончательно:

F_{A}=rho gV. (1)

Это и есть формула для архимедовой силы. Возникает архимедова сила вследствие того, что давление жидкости на нижнее основание цилиндра больше, чем на верхнее.

Формулу (1) можно интерпретировать следующим образом. Произведение rho V — это масса
жидкости m, объём которой равен V : rho V=m. Но тогда rho gV=mg=P, где P — вес жидкости, взятой в объёме V. Поэтому наряду с (1) имеем:

F_{A}=P. (2)

Иными словами, архимедова сила, действующая на цилиндр, равна весу жидкости, объём которой совпадает с объёмом цилиндра.

Формулы (1) и (2) справедливы и в общем случае, когда погружённое в жидкость или газ тело объёма V имеет любую форму, а не только форму цилиндра (конечно, в случае газа rho — это плотность газа). Поясним, почему так получается.

Выделим мысленно в среде некоторый объём V произвольной формы. Этот объём находится в равновесии: не тонет и не всплывает. Следовательно, сила тяжести, действующая на среду, находящуюся внутри выделенного нами объёма, уравновешена силами давления на поверхность нашего объёма со стороны остальной среды — ведь на нижние элементы поверхности приходится большее давление, чем на верхние.

Иными словами, равнодействующая сил гидростатического давления на поверхность выделенного объёма — архимедова сила — направлена вертикально вверх и равна весу среды в этом объёме.

Сила тяжести, действующая на наш объём, приложена к его центру тяжести. Значит, и архимедова сила должна быть приложена к центру тяжести выделенного объёма. В противном случае сила тяжести и архимедова сила образуют пару сил, которая вызовет вращение нашего объёма (а он находится в равновесии).

А теперь заменим выделенный объём среды твёрдым телом того же объёма V и той же самой формы. Ясно, что силы давления среды на поверхность тела не изменятся, так как неизменной осталась конфигурация среды, окружающей тело. Поэтому архимедова сила попрежнему будет направлена вертикально вверх и равна весу среды, взятой в объёме V. Точкой приложения архимедовой силы будет центр тяжести тела.

Закон Архимеда. На погружённое в жидкость или газ тело действует выталкивающая сила, направленная вертикально вверх и равная весу среды, объём которой равен объёму тела.

Таким образом, архимедова сила всегда находится по формуле (1). Заметим, что в эту формулу не входят ни плотность тела, ни какие-либо его геометрические характеристики — при фиксированном объёме величина архимедовой силы не зависит от вещества и формы тела.

До сих пор мы рассматривали случай полного погружения тела. Чему равна архимедова сила при частичном погружении? На ту часть тела, которая находится над поверхностью жидкости, никакая выталкивающая сила не действует. Если эту часть мысленно срезать, то величина архимедовой силы не изменится. Но тогда мы получим целиком погружённое тело, объём которого равен объёму погружённой части исходного тела.

Значит, на частично погружённое в жидкость тело действует выталкивающая сила, равная весу жидкости, объём которой равен объёму погружённой части тела. Формула (1) справедлива и в этом случае, только объём всего тела V нужно заменить на объём погружённой части Vпогр:

F_{A}=rho gVпогр.

Архимед обнаружил, что целиком погружённое в воду тело вытесняет объём воды, равный собственному объёму. Тот же факт имеет место для других жидкостей и газов. Поэтому можно сказать, что на всякое тело, погружённое в жидкость или газ, действует выталкивающая сила, равная весу вытесненной телом среды.

к оглавлению ▴

Плавание тел.

Рассмотрим тело плотности rho и жидкость плотности rho_{0} . Допустим, что тело полностью погрузили в жидкость и отпустили.

С этого момента на тело действуют лишь сила тяжести mg и архимедова сила F_{A}. Если объём тела равен V, то

mg=rho gV, F_{A}=rho_{0}gV.

Имеются три возможности дальнейшего движения тела.

1. Сила тяжести больше архимедовой силы: mg > F_{A}, или rho > rho_{0}. В этом случае тело тонет.

2. Сила тяжести равна архимедовой силе: mg = F_{A}, или rho = rho_{0}. В этом случае тело остаётся неподвижным в состоянии безразличного равновесия.

3. Сила тяжести меньше архимедовой силы: mg < F_{A}, или rho < rho_{0}. В этом случае тело всплывает, достигая поверхности жидкости. При дальнейшем всплытии начнёт уменьшаться объём погружённой части тела, а вместе с ним и архимедова сила. В какой-то момент архимедова сила сравняется с силой тяжести (положение равновесия). Тело по инерции всплывёт дальше, остановится, снова начнёт погружаться. . . Возникнут затухающие колебания, после которых тело останется плавать в положении равновесия (mg = F_{A}), частично погрузившись в жидкость.

Таким образом, условие плавания тела можно записать в виде неравенства: rho leq rho_{0}.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Статика жидкостей и газов.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
07.05.2023

На какую высоту поднимается столб воды при давлении в один кг?

Ульчик
[444]

6 лет назад 

Горячая вода поднимется выше, холодная ниже. Еще зависит от чистоты воды, пресная или соленая, газированная или без газа, так как все эти качества влияют на плотность воды. Если плотность воды равна 1 грамм на сантиметр кубический, то столб воды в трубе поднимется на 10 метров при давлении 1 кГ на сантиметр квадратный.

система выбрала этот ответ лучшим

комментировать

в избранное

ссылка

отблагодарить

Ракит­ин Серге­й
[450K]

6 лет назад 

Давление в «1 кг» соответствует 0,97 атмосфере, т.е. эквивалентно 97% давления столба воздуха на высоте уровня моря. В пересчете на ртуть это 760 мм. Ртуть в 13,55 раз тяжелее воды, поэтому такое же давление будет оказывать столб воды в 10,3 м, умножаем на 0,97 и получаем ровно 10 метров. Вот на такую высоту и поднимется водяной столб при давление в трубе «1 кг».

комментировать

в избранное

ссылка

отблагодарить

bezde­lnik
[34.1K]

6 лет назад 

Давление измеряется в Ньютонах на квадратный метр (Н/м2) а не в кг, поэтому вопрос сформулирован не корректно и определенного ответа на него дать невозможно. Кроме того высота подъёма столба воды при определенном давлении зависит ещё от размера сопла, через которое вода вытекает. Чем меньше диаметр сопла тем на большую высоту поднимется столб воды.

в избранное

ссылка

отблагодарить

ДмитрийД
[8.1K]

Приходится догадываться, что автор имел в виду давление 1 кГ/см2, так называемую техническую атмосферу, а высоту столба предполагал уровень подъёма воды водопровода при указанном давлении воды на входе. 
—  6 лет назад 

bezdelnik
[34.1K]

Ни о какой догадке не может быть речи, можно лишь сделать предположение. Единицы давления 1 кГ/см2 тоже нет, есть устаревшая единица кГс/см2. Мой ответ тоже на основе предположения, что вода свободно вытекает вверх через сопло из ёмкости внутри которой вода под определенным избыточным давлением. Серей Ракитин исходит из предположения, что вода поднимается внутри трубки с открытыми концами, один из которых помещен в ёмкость с избыточным давлением 0,97 атмосферы. 
—  6 лет назад 

maxgr­ey
[41.7K]

6 лет назад 

Килограммы это размерность массы, вес измеряется в ньютонах, а давление либо кгс/см2, либо Н/мм2. Предположу, что это один килограмм силы на сантиметр квадратный.

Давление это плотность помноженная на ускорение свободного падение на высоту столбца и деленная на 10.

где p — давление жидкости, кгс/см2;

р — плотность жидкости, гс» с4/см2;

g — ускорение свободного падения, см/с2;

Y — удельный вес жидкости, кг/см3, кгс/л;

Н — глубина, м.

Воспользуемся формулой и получим: Н=1м.

в избранное

ссылка

отблагодарить

ДмитрийД
[8.1K]

Вы где-то 0 упустили, для воды должно быть примерно 10 метров. 
—  6 лет назад 

Серге­й2586
[15.2K]

6 лет назад 

Давление p = ρо*g*h;(нам надо найти высоту крч составим обратную пропорцию)

высота столба жидкости h = p / (ρ*g).

g=9.8(10)-коэффициент свободного падения

ρ-плотность воды =(0,9982 г/см³)

m=1 kg=1000 грамм система (СИ)

h-высота искомая величина

И это я чет не догоняю в давлении в 1 кг чего ваты метала ? цезия там

Голова не варит 3 часа ночи подставь в самую первую формулу потом во вторую

комментировать

в избранное

ссылка

отблагодарить

Знаете ответ?

Дано:

ro (килограмм на кубический метр) — плотность некоторой жидкости;

g = 10 Ньютон/килограмм — ускорение свободного падения;

P (Паскаль) — давление столба жидкости на некоторой глубине (высоте столба) h.

Требуется определить h (метр) — высоту столба жидкости.

Чтобы определить высоту столба некоторой жидкости, необходимо воспользоваться следующей формулой:

P = ro * g * h, отсюда находим, что:

h = P / (ro * g) = P / (10 * ro).

Ответ: высоту столба жидкости можно определить по формуле: h = P / (10 * ro).

Понравилась статья? Поделить с друзьями:
  • Как найти приложение бубу
  • Как можно найти матрешку
  • Первичный рабочий диск переполнен фотошоп как исправить mac
  • Как найти любой инстаграм
  • Как найти историю открытия сайтов