- Подробности
- Обновлено 03.07.2018 17:34
- Просмотров: 1475
Задачи по физике — это просто!
Не забываем, что решать задачи надо всегда в системе СИ!
А теперь к задачам!
Элементарные задачи из курса школьной физики на расчет величины магнитной индукции и магнитного потока.
Задача 1
Определить магнитный поток, проходящий через площадь 20 м2, ограниченную замкнутым контуром в однородном магнитном поле с индукцией 20 мТл, если угол между вектором магнитной индукции и плоскостью контура составляет 30o.
Задача 2
Определите магнитный поток, пронизывающий плоскую прямоугольную поверхность со сторонами 25 см и 60 см, если магнитная индукция во всех точках поверхности равна 1,5 Тл, а вектор магнитной индукции образует с нормалью к этой поверхности угол, равный: а) 0, б) 45o, в) 90o.
Задача 3
Магнитный поток внутри контура, площадь поперечного сечения которого 60 см2, равен 0,3 мВб.
Найдите индукцию поля внутри контура. Поле считать однородным.
Задача 4
Определить магнитную индукцию магнитного поля, если магнитный поток через площадь 500 см2, ограниченную контуром, составил 9×10-4 Вб. Угол между вектором магнитной индукции и плоскостью контура составляет 60o.
Задача 5
Протон, влетев в магнитное поле со скоростью 100 км/с, описал окружность радиусом 50 см.
Определить индукцию магнитного поля, если заряд протона составляет 1,6х10-19 Кл, а масса равна 1,67х10-27 кг.
Закон электромагнитной индукции, или закон Фарадея – основной закон электродинамики. В сегодняшней статье разберем решение нескольких задач на применение закона электромагнитной индукции.
Подписывайтесь на наш телеграм – там есть не только задачи, но и много интересного для учащихся всех специальностей. А еще, не пропустите приятные скидки и акции на нашем втором канале!
Электромагнитная индукция: задачи с решением
Прежде чем решать задачи на электромагнитную индукцию, вспомните теорию и держите под рукой полезные формулы.
Не знаете, как подступиться к задаче? Держите универсальную памятку по решению абсолютно любых физических задач.
Задача №1 на закон электромагнитной индукции
Условие
Проводник, свитый в 5 витков, находится в магнитном поле. Магнитный поток через поверхность витка изменяется по закону Фt=50-3t (Вб) . Определить направление и силу индукционного тока в проводнике, если его сопротивление равно 5 Ом.
Решение
Согласно основному закону электромагнитной индукции в проводнике возникает ЭДС индукции, величина которой определяется скоростью изменения магнитного потока, пронизывающего контур:
ε=-NdФdt
Индукционный ток в проводнике можно найти по закону Ома:
I=εR
Вычислим производную и найдем ток:
dФdt=d50-3tdt=-3
Тогда:
I=3NR=3·55=3 А
Уменьшение потока вызывает увеличение ЭДС, то есть направления потока и поля индукционного тока совпадают:
Ответ: 3 А.
Задача №2 на закон электромагнитной индукции
Условие
По катушке индуктивностью L=8 мкГн течет ток I=6 А. Определить среднее значение ЭДС самоиндукции, возникающей в контуре, если сила тока изменяется практически до нуля за время ∆t=5 мс.
Решение
По определению, магнитный поток равен:
Ф=L·I
ЭДС самоиндукции определим по закону Фарадея:
<ε>=∆Ф∆t=-L∆I∆t
Учитывая, что индуктивность неизменна, и магнитный поток изменяется только за счёт изменения силы тока до нуля (ΔI = I), можно записать:
<ε>=-LI∆t
Подставим числа и вычислим:
<ε>=-8·10-6·65·10-3=-9,6·10-3 В
Ответ: -9,6 мВ.
Задача №3 на закон электромагнитной индукции
Условие
Магнитный поток через контур проводника сопротивлением 0,04 Ом за 3 секунды изменился на 0,013 Вб. Найдите силу тока в проводнике, если изменение потока происходило равномерно.
Решение
В данном случае силу тока можно выразить через закон Ома с учетом закона электромагнитной индукции:
Ii=εiR=-∆Ф∆t1R
Подставляем значения и вычисляем:
Ii=0,0133·0,04=0,11 А.
Ответ: 0,11 А.
Задача №4 на закон электромагнитной индукции
Условие
Прямой проводящий стержень длиной 40 см находится в однородном магнитном поле с индукцией 0,1 Тл. Концы стержня замкнуты гибким проводом, находящимся вне поля. Сопротивление всей цепи 0,5 Ом. Какая мощность потребуется для равномерного перемещения стержня перпендикулярно линиям магнитной индукции со скоростью 10 м/с?
Решение
Если стержень будет двигаться равномерно, магнитный поток через площадь, «заметаемую» стержнем за некоторое время, будет равен:
Ф=ВS=Blvt
При этом разность потенциалов на стержне будет равна ЭДС и, согласно закону электромагнитной индукции Фарадея:
U=dФdt=Blv
Искомая мощность будет равна мощности, выделяемой на сопротивлении:
P=U2R=Blv2R=0,1·0,4·1020,5=0,32 Вт
Ответ: 0,32 Вт.
Нужно больше задач на мощность? Читайте наш блог!
Задача №5 на закон электромагнитной индукции
Условие
В проволочное кольцо, присоединенное к баллистическому гальванометру, вставили прямой магнит. При этом по цепи прошел заряд q=50мкКл. Определить изменение магнитного потока через кольцо, если сопротивление цепи гальванометра R=10 Oм.
Решение
По закону Фарадея, ЭДС находится как отношения изменения магнитного потока ко времени, за которое оно произошло:
εi=∆Ф∆t∆Ф=εi·t
C другой стороны, по закону Ома, можно записать:
εi=IR
Ток, в свою очередь, равен отношению проходящего заряда ко времени:
I=∆Q∆t
C учетом всего этого выражения для ЭДС и потока можно переписать:
εi=R·∆Q∆t∆Ф= R∆Q∆t∆t=R∆Q∆Ф=10·50·10-6=5·10-4 Вб
Ответ: 0,5 мВб.
Вопросы на тему «Электромагнитная индукция»
Вопрос 1. Что такое электромагнитная индукция?
Ответ. Электромагнитная индукция — это явление, когда в замкнутом проводнике (контур, рамка) возникает ток, при помещении этого проводника в изменяющееся магнитное поле.
Вопрос 2. Что такое магнитный поток?
Ответ. Магнитный поток, или поток магнитной индукции через какую-то поверхность – это скалярная физическая величина, равна произведению модуля магнитной индукции на площадь данной поверхности и косинус угла между вектором индукции и нормалью к поверхности.
Ф=BScosα
Магнитный поток характеризует густоту силовых линий магнитного поля, пронизывающих поверхность. Единица измерения – Вебер.
Вопрос 3. Сформулируйте закон Фарадея
Ответ. Закон электромагнитной индукции Фарадея гласит:
ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока, пронизывающего контур, взятой с противоположным знаком.
εi=-dФdt
Вопрос 4. Что означает знак «-» в формуле для закона электромагнитной индукции.
Ответ. Направление индукционного тока определяется по правилу Ленца: индукционный ток всегда имеет такое направление, что он ослабляет действие причины, возбуждающей этот ток. В соответствии с правилом Ленца ток направлен так, что созданный им магнитный поток противодействует изменению внешнего магнитного потока. Именно поэтому в формуле присутствует знак «-».
Вопрос 5. Как закон Фарадея применяется на практике?
Ответ. Закон электромагнитной индукции Фарадея нашел широчайшее применение. В качестве самого распространенного примера можно привести такое устройство, как электродвигатель, принцип действия которого основан именно на этом законе.
Нужна помощь в решении задач и других заданий по учебе? Профессиональный сервис для студентов всегда поспособствует качественному выполнению всех работ.
Задачи по магнетизму с решениями
Сила Ампера
8.1.1 Под каким углом расположен прямолинейный проводник с током 4 А в однородном магнитном
8.1.2 Проводник с током 21 А и длиной 0,4 м перемещается в однородном магнитном поле
8.1.3 В однородном магнитном поле индукцией 15 Тл проводник переместился перпендикулярно
8.1.4 На прямой проводник с током длиной 0,5 м, перпендикулярный линиям индукции
8.1.5 Прямолинейный проводник массой 2 кг и длиной 0,5 м помещен в однородное магнитное поле
8.1.6 Проводник, расположенный перпендикулярно силовым линиям магнитного поля, весит
8.1.7 С какой средней силой действовало магнитное поле на проводник длиной 0,3 м, если сила тока
8.1.8 В однородном вертикальном магнитном поле с индукцией 0,25 Тл горизонтально подвешен
8.1.9 В однородном магнитном поле с индукцией 0,06 Тл находится горизонтальный проводник
8.1.10 В однородном магнитном поле с индукцией 150 мТл на расстояние 1,2 м перемещается
8.1.11 Проводник массой 5 г на метр длины, по которому течет ток силой в 10 А, расположенный
8.1.12 Прямой проводник с током 1 А приобрел под действием перпендикулярного ему магнитного
8.1.13 На прямолинейный проводник длиной 40 см и током 20 А, расположенный под углом
8.1.14 В однородном магнитном поле с индукцией 4,9 Тл горизонтально подвешен на двух нитях
8.1.15 Прямой провод, по которому течет постоянный ток, расположен в однородном магнитном
8.1.16 По проводнику АБ протекает постоянный ток. Проводник помещен в однородное магнитное
8.1.17 По проводнику АБ протекает постоянный ток. Проводник помещен в однородное магнитное
8.1.18 По проводнику АБ протекает постоянный ток. Проводник помещен в однородное магнитное
8.1.19 Прямой проводник, по которому течет постоянный ток, расположен в однородном магнитном
8.1.20 Прямой провод, по которому течет постоянный ток, расположен в однородном магнитном
8.1.21 Провод длиной 20 см с током 10 А перемещается в однородном магнитном поле с индукцией
Сила Лоренца
8.2.1 Электрон с энергией 4,2*10^(-18) Дж влетает в однородное магнитное поле с индукцией 0,3 Тл
8.2.2 На частицу со стороны однородного магнитного поля действует сила Лоренца, равная
8.2.3 Электрон и протон, двигаясь с одинаковыми скоростями, влетают в однородное магнитное
8.2.4 Протон влетает в однородное магнитное поле с индукцией 20 мкТл перпендикулярно линиям
8.2.5 Два электрона ускоряются из состояния покоя электрическим полем с разностью потенциалов
8.2.6 Электрон влетает в однородное магнитное поле с индукцией 0,004 Тл так, что направление
8.2.7 Во сколько раз изменится радиус траектории движения заряженной частицы в циклотроне
8.2.8 Электрон, ускоренный разностью потенциалов 1 кВ, влетает в однородное магнитное поле
8.2.9 Протон описал окружность радиусом 5 см в однородном магнитном поле с индукцией 20 мТл
8.2.10 Заряженная частица движется в магнитном поле по окружности радиусом 4 см
8.2.11 Электрон движется в однородном магнитном поле с индукцией 0,1 Тл по окружности
8.2.12 Протон движется в однородном магнитном поле с индукцией 1 Тл со скоростью 200000 км/с
8.2.13 Заряженная частица, ускоренная разностью потенциалов 200 В, влетела в точке 1
8.2.14 Электрон, двигаясь равноускоренно из состояния покоя с ускорением 5 м/с2, в течение 1 мин
8.2.15 Электрон, имея скорость 2000 км/с, влетел в однородное магнитное поле с индукцией
8.2.16 Каким должен быть модуль скорости электрона, чтобы его движение было прямолинейным
8.2.17 Двухвалентный ион движется со скоростью 481 км/с в однородном магнитном поле
8.2.18 Циклотрон предназначен для ускорения протонов до энергии 5 МэВ. Определить
8.2.19 Протон движется в вакууме в однородном магнитном поле с индукцией 94,2 мкТл
8.2.20 Электрон, движущийся со скоростью 10^7 м/с, влетает в однородное магнитное поле
8.2.21 Электрон, прошедший некоторую разность потенциалов, влетает в однородное магнитное
8.2.22 Если конденсатор с расстоянием между пластинами 1 см определенным образом
8.2.23 Электрон движется в магнитном поле с индукцией 2 мТл по винтовой линии радиусом
8.2.24 Заряженная частица влетает в однородное магнитное поле перпендикулярно линиям
8.2.25 Протон и альфа-частица (4He2), ускоренные одинаковой разностью потенциалов, влетают
8.2.26 Протон и дейтрон (ядро изотопа водорода 2H1), имеющие одинаковые скорости, влетают
8.2.27 Протон и дейтрон (ядро изотопа водорода 2H1) влетают в однородное магнитное поле
8.2.28 Протон влетает в однородное магнитное поле перпендикулярно линиям магнитной индукции
Магнитный момент. Магнитный поток
8.3.1 Сила тока в плоском контуре возрастает в 2 раза. Во сколько раз увеличивается
8.3.2 Поток магнитной индукции, пронизывающий плоскость квадрата, равен 0,2 Вб. Каким
8.3.3 Определить силу тока, протекающего по плоскому контуру площадью 5 см2, находящемуся
8.3.4 Найти максимальный магнитный поток через прямоугольную рамку, вращающуюся
8.3.5 Определить индуктивность катушки, в которой возникает поток 0,12 Вб при силе тока
8.3.6 Полоску площадью 200 см2, расположенную под углом 60 к направлению однородного
8.3.7 Определить изменение магнитного потока через катушку, если она имеет 2000 витков
8.3.8 Магнитная индукция однородного магнитного поля равна 4 Тл. Какой магнитный поток
8.3.9 Рамка площадью 100 см2 расположена перпендикулярно линиям магнитной индукции
8.3.10 Магнитная индукция однородного магнитного поля равна 0,5 Тл. Найти магнитный поток
8.3.11 Прямоугольная рамка из провода имеет длину 25 см и ширину 12 см. Определить
8.3.12 Плоский контур площадью 25 см2 находится в однородном магнитном поле с индукцией
8.3.13 Найти магнитный поток через плоскую поверхность площадью 40 см2, расположенную
8.3.14 Определить индукцию однородного магнитного поля, если на прямоугольную рамку
8.3.15 Из проволоки длиной 20 см сделали квадратный контур. Найти максимальный вращающий
8.3.16 Определить вращающий момент плоского контура площадью 0,04 м2, помещенного
8.3.17 Определить поток вектора магнитной индукции через плоскую поверхность площадью
8.3.18 Какую размерность в системе СИ имеет единица измерения магнитного потока?
ЭДС индукции
8.4.1 Найти величину ЭДС индукции в проводнике с длиной активной части 0,25 м, который
8.4.2 Магнитный поток, пронизывающий контур проводника, равномерно изменился на 0,5 Вб
8.4.3 В замкнутую накоротко катушку из медной проволоки вводят магнит, создающий внутри ее
8.4.4 Магнитный поток в контуре проводника за 0,2 с изменился на 1,2 Вб. Какова ЭДС
8.4.5 Магнитный поток через контур изменяется от 6 до 14 Вб за 20 с. Определите абсолютную
8.4.6 Два замкнутых круговых проводника лежат в одной плоскости. При одинаковом изменении
8.4.7 Проводник длиной 2 м движется в однородном магнитном поле индукцией 0,1 Тл
8.4.8 В однородном магнитном поле с индукцией 0,4 Тл равномерно вращается рамка
8.4.9 Рамка из 1000 витков площадью 5 см2, замкнутая на гальванометр с сопротивлением 10 кОм
8.4.10 Магнитный поток, пронизывающий контур проводника, равномерно изменился на 0,5 Вб
8.4.11 С какой скоростью движется проводник в воздухе перпендикулярно линиям индукции
8.4.12 За 5 мс в соленоиде, содержащем 500 витков провода, магнитный поток равномерно
8.4.13 Проводник длиной 1 м движется со скоростью 5 м/с перпендикулярно линиям индукции
8.4.14 Рамка в форме равностороннего треугольника помещена в однородное магнитное поле
8.4.15 Проводник длиной l=1 м лежит на двух гладких горизонтальных шинах, расположенных
8.4.16 Плоская проволочная квадратная рамка со стороной 60 см находится в магнитном поле
8.4.17 Квадратная рамка площадью 100 см2 вращается в магнитном поле с индукцией 0,2 Тл
8.4.18 Рамка площадью 20 см2, имеющая 1000 витков, вращается с частотой 50 Гц
8.4.19 Рамка из 25 витков находится в магнитном поле. Определить ЭДС индукции
8.4.20 Из провода длиной 2 м сделан квадрат, который находится в поле индукцией 50 мкТл
8.4.21 Самолет, имеющий размах крыльев 31,7 м, летит горизонтально со скоростью 400 м/с
8.4.22 Сколько витков провода должна содержать обмотка на стальном сердечнике с поперечным
8.4.23 Какого максимального значения может достигать разность потенциалов, возникающая
8.4.24 Проволочный виток площадью 1 см2 и сопротивлением 1 Ом пронизывается магнитным
8.4.25 Металлическое кольцо радиусом 4,8 см расположено в магнитном поле с индукцией 12 мТл
8.4.26 Прямолинейный проводник длиной 120 см движется в однородном магнитном поле
8.4.27 Под каким углом к линиям индукции однородного магнитного поля индукции 0,5 Тл
8.4.28 Контур сечением 400 см2 из 100 витков равномерно вращается в однородном магнитном
8.4.29 Магнитный поток 30 мВб, пронизывающий замкнутый контур, убывает до нуля за 13 мс
8.4.30 Катушка сопротивлением 100 Ом, состоящая из 1000 витков площадью 5 см2 каждый
8.4.31 Магнитный поток через катушку, состоящую из 75 витков, равен 4,8 мВб. За сколько
8.4.32 Проводник длиной 2 м с сопротивлением 0,02 Ом движется в магнитном поле со скоростью
8.4.33 Проводник с активной длиной 15 см и сопротивлением 0,5 Ом движется со скоростью
8.4.34 Определить ЭДС индукции в проводнике длиной 20 см, движущегося в однородном
8.4.35 Магнитный поток через соленоид, содержащий 500 витков провода, равномерно убывает
8.4.36 Определить изменение магнитного потока через катушку за время 0,01 с, если она
8.4.37 Рамка площадью 20 см2, имеющая 1000 витков, вращается с частотой 50 Гц в однородном
8.4.38 Соленоид, содержащий 1000 витков провода, находится в однородном магнитном поле
8.4.39 Катушку с ничтожно малым сопротивлением и индуктивностью 3 Гн подключают
8.4.40 Катушка сопротивлением 100 Ом, состоящая из 1000 витков, площадью 5 см2 каждый
8.4.41 Проводник длиной 25 см движется в однородном магнитном поле с индукцией 4 Тл
8.4.42 Рамка площадью 300 см2 имеет 200 витков и находится в магнитном поле 0,1 Тл, силовые
8.4.43 Виток площадью 50 см2 замкнут на конденсатор емкостью 20 мкФ. Плоскость витка
8.4.44 В однородном горизонтальном магнитном поле с индукцией B=60 мТл находится
8.4.45 Горизонтальные рельсы находятся на расстоянии 0,3 м друг от друга. На них лежит
8.4.46 Контур площадью 2 м2 и сопротивлением 0,003 Ом находится в однородном поле
8.4.47 Плоский виток провода расположен перпендикулярно однородному магнитному полю
8.4.48 Короткозамкнутая катушка, состоящая из 1000 витков проволоки, помещена в магнитное поле
8.4.49 Поток магнитной индукции в проводящем контуре, содержащем 100 витков
8.4.50 В магнитном поле с индукцией 0,01 Тл вращается стержень длиной 0,2 м с постоянной
8.4.51 Найти максимальный магнитный поток через прямоугольную рамку, вращающуюся
8.4.52 При равномерном изменении силы тока через катушку из 500 витков в ней возникает
8.4.53 Соленоид, содержащий 1000 витков медной проволоки сечением 0,2 мм2, находится
8.4.54 Какой ток идет через гальванометр с сопротивлением 100 Ом, присоединенный
8.4.55 Два металлических стержня расположены вертикально и замкнуты вверху проводником
8.4.56 Две параллельные вертикальные медные шины, находящиеся в 1 м друг от друга
8.4.57 В однородном магнитном поле с индукцией 10 мТл расположены вертикально
8.4.58 Проволочный виток, имеющий площадь 100 см2, разрезан в некоторой точке, и в разрез
8.4.59 Виток медного провода помещен в однородное магнитное поле перпендикулярно линиям
8.4.60 Рамка площадью 100 см2, на которой намотано 100 витков провода сопротивлением 10 Ом
8.4.61 Медный обруч массой 5 кг расположен в плоскости магнитного меридиана. Какой заряд
8.4.62 Магнитный поток через контур сопротивлением 2 Ом равномерно увеличили от 0 до 0,3 мВб
8.4.63 Проволочная рамка площадью 400 см2 равномерно вращается в однородном магнитном
8.4.64 Катушка индуктивности площадью 2 см2 из 500 витков толстого провода подключена
8.4.65 Два параллельных замкнутых на одном конце провода, расстояние между которыми 50 см
8.4.66 С какой угловой скоростью надо вращать прямой проводник длиной 20 см вокруг оси
8.4.67 Тонкий медный провод массой 1 г согнут в виде квадрата, и концы его замкнуты
8.4.68 Квадратная рамка со стороной 20 см расположена в магнитном поле так
8.4.69 В однородном магнитном поле с индукцией 0,02 Тл расположены вертикально
8.4.70 Прямолинейный проводник длиной 10 см перемещают в однородном магнитном поле
Самоиндукция
8.5.1 Соленоид сечением 10 см2 содержит 1000 витков. Индукция внутри соленоида
8.5.2 Определить индуктивность катушки, если при силе тока 6,2 А, её магнитное поле
8.5.3 В соленоиде, индуктивность которого 0,4 мГн и площадь поперечного сечения 10 см2
8.5.4 Найти индуктивность проводника, в котором равномерное изменение силы тока на 2 А
8.5.5 Какова индуктивность катушки с железным сердечником, если за время 0,5 с ток в цепи
8.5.6 Определите индуктивность катушки, если при постоянном изменении в ней тока
8.5.7 При изменении силы тока в катушке от 5 до 10 А за 0,1 с возникает ЭДС
8.5.8 Какова скорость изменения силы тока в обмотке электромагнитного реле
8.5.9 По катушке индуктивностью 80 мГн проходит постоянный ток 2 А. Определить время убывания тока
8.5.10 За какое время в катушке с индуктивностью 0,24 Гн происходит нарастание силы тока от нуля до 14,4 А
8.5.11 Какова индуктивность катушки, если за время 2,5 с ток изменился от 15 до 5 А, а возникшая
8.5.12 При протекании тока силой 15,7 А по обмотке длинной катушки диаметром 2 см и индуктивностью
8.5.13 В катушке индуктивности 40 мГн при равномерном исчезновении тока 2 А в течение 0,01 с
8.5.14 Определите индуктивность катушки, если при равномерном изменении в ней тока от 5 до 10 А
8.5.15 Ток в катушке индуктивности L=2 Гн изменяется со временем, как показано на рисунке
Энергия магнитного поля
8.6.1 Во сколько раз изменится энергия магнитного поля соленоида, если силу тока в нем
8.6.2 На катушке с сопротивлением 5 Ом и индуктивностью 25 мГн поддерживается
8.6.3 Индуктивность катушки 0,1 мГн. При каком магнитном потоке энергия магнитного поля
8.6.4 На катушку с сопротивлением 8,2 Ом подано постоянное напряжение 55 В. Сколько
8.6.5 Определите энергию магнитного поля, если при протекании тока 2 А магнитный поток
8.6.6 Определить индуктивность катушки, если в ней при прохождении тока 2 А энергия
8.6.7 По катушке протекает постоянный ток, создающий магнитное поле. Энергия этого поля
8.6.8 Какой должна быть сила тока в обмотке дросселя с индуктивностью 15 мГн
8.6.9 Определить индуктивность катушки, если при токе 6,4 А ее магнитное поле
8.6.10 Какая совершается работа при пересечении проводником с током 4 А магнитного потока
( 27 оценок, среднее 4.63 из 5 )
Методика решения задач
При решении
задач на данную тему надо пользоваться
общей методикой решения задач, но
существуют тонкости, которые необходимо
учитывать в этом разделе электромагнетизма.
Порядок решения задач на нахождение
индукции или напряженности магнитного
поля от одного или нескольких источников
магнитного поля следующий.
-
Записать условия
задачи кратко и перевести все численные
данные в единую систему единиц. -
Нарисовать рисунок.
При этом следует помнить, что индукция
или напряженность магнитного поля –
величины векторные, которые характеризуются
как величиной, так и направлением. -
Для изображения
вектора магнитной индукции или
напряженности магнитного поля необходимо
нарисовать силовые линии магнитной
индукции, проходящие через точку
пространства, в которой необходимо
определить магнитную индукцию, и
изобразить их направление по правилу
буравчика. -
Вектор магнитной
индукции, так же как и вектор напряженности
поля будет совпадать с касательной к
силовым линиям в данной точке. -
Если поле создается
несколькими проводниками с током или
несколькими частями проводника с током,
имеющим сложную геометрию, то
результирующую магнитную индукцию или
напряженность следует искать по принципу
суперпозиции как векторную сумму всех
напряженностей или магнитных индукций
поля.. -
Величину каждой
магнитной индукции или напряженности
определяют апо закону Био-Савара-Лапласа
в соответствии с геометрией проводника.
Примеры решения задач
Задача
1. Два параллельных бесконечно
длинных провода, по которым текут в
одном направлении токи I1
= 60 А и I2
= 30 А, расположены на расстоянии d
= 10 см друг от друга в воздухе . Определить
магнитную индукцию B
в точках:
-
А1,
расположенной между проводниками с
током на расстоянии d/2
от каждого из них; -
А2,
расположенной на расстоянии d/2
от проводника с током I1
и на расстоянии 3d/2
от проводника с током I2; -
А3,,
расположенной на расстоянии R1
= 5 см от первого тока и на расстоянии
R2 = 12 см
от второго тока.
I
1
= 60 А Найдем магнитную индукция в
точке А1.
I
2
= 30 А Для этого нарисуем рисунок.
R
1
= 5 см = 5.10-2 м
R2
= 12 см = 12. 10-2 м
d
= 10 см = 10-1 м
B
= ?
Согласно
принципу суперпозиции
B = B1
+ B2
В
проекции на выбранную ось y
это уравнение примет вид:
B = B2
– B1.
прямого
бесконечно длинного провода
Подставив
численные значения величин, получим
значение магнитной индукции в точке
А1..
B = — 120 мкТл
Знак
минус означает, что направление
результирующей магнитной индукции
противоположно выбранной оси y.
Найдем
магнитную индукция в точке А2
I1
По
принципу суперпозиции магнитная индукция
в точке А2 равна
B = B1
+ B2,
а в
проекции на ось y это
уравнение примет вид:
B = B1
+ B2.
Величина магнитной индукции от первого
и второго тока определяется по закону
Био-Савара-Лапласа для прямого бесконечно
длинного проводника с током:
Подставив
численные значения величин, получаем:
B=200 мкТл.
Найдем
магнитную индукция в точке А3.
По
принципу суперпозиции результирующая
магнитная индукция равна векторной
сумме магнитных индукций:
B = B1
+ B2
Модуль
результирующей магнитной индукции
можно получить по теореме косинусов:
,
где
— угол между векторами B1
и B2. Cos
из
геометрического треугольника:
Величины каждой
магнитной индукции получим из закона
Био-Савара-Лапласа для прямого бесконечно
длинного проводника с током:
Подставив
численные значения, получим:
B =
Задача 2. Длинный
провод с током I
= 50 А изогнут под углом
=2/3 и находится
в воздухе. Определить магнитную индукцию
в точке А1, находящуюся на
продолжении одной из сторон угла на
расстоянии d = 5 см
от его вершины, и в точке А2,,
находящейся на биссектрисе угла на
расстоянии d = 5 см
от его вершины.
Д
ля
определения индукции магнитного поля
в точке А1 нужно разбить фигуру
на два участка 1 и 2. По принципу суперпозиции
результирующая магнитная индукция
будет равна векторной сумме магнитных
индукция от первого и второго участков
провода:
Магнитная индукция
В2 = 0, как следует из закона
Био-Савара-Лапласа ,согласно которому
в точках, лежащих на оси проводника dВ
= 0 (
).Магнитную
индукцию B2 найдем,
воспользовавшись формулой закона
Био-Савара-Лапласа для проводника
конечной длины с несимметричной точкой,
в которой ищем магнитную индукцию,
Для этого надо найти
величину r0 –
кратчайшего расстояния от точки до
проводника.
,
Для точки А1
магнитная индукция равна:
B
= 17 мТл.
Найдем магнитную
индукцию в точке А2. По принципу
суперпозиции В = В1 + B2/
По правилу буравчика магнитная индукция
будет лежать вдоль прямой, перпендикулярной
плоскости чертежа, и направлена на нас.
B
= 35 мТл.
Задача3.Бесконечно
длинный проводник, находящийся в воздухе,
изогнут так, как это показано на рисунке.
Радиус дуги R = 10
см. Определить магнитную индукцию поля,
создаваемого в точке О током I
= 80 А, текущем в этом проводнике.
I
= 80 А
R = 0,1 м
B = ?
Рисунок
Для решения задачи
разделим проводник на три участка. Тогда
по принципу суперпозиции результирующая
индукция поля будет равна векторной
сумме магнитных индукций от каждого
участка. Применив правило буравчика
для каждого участка проводника можно
увидеть, что все они направлены вдоль
прямой, перпендикулярной плоскости
чертежа на нас и следователь векторное
сложение можно заменить скалярным
сложением: B = B1
+ B2 + B3
Причем B3
= 0 (см. предыдущую задачу).Найдем
индукцию магнитного поля для каждого
участка
B
= 4,14 мкТл.
Задача 4.По
тонкому проводящему кольцу, находящемуся
в воздухе, радиуса R
= 10 см течет ток I
= 80 А. Найти магнитную индукцию в точке
А, Равноудаленной от всех точек кольца
на расстояние, а = 20 см.
R = 0,1
м Для решения задачи воспользуемся
законом Био-Савара-Лапласа:
I = 80
А
,
а = 0,2 м где dB –
магнитная индукция поля, создаваемого
элементом тока Idl в
точке, определяемой радиусом-вектором
r.
B =
?
Выделим
на кольце элемент dI и от
него
в точку А проведем радиус-вектор r.
Вектор dB направим в
с
оответствии
с правилом буравчика.
Согласно принципу
суперпозиции
Магнитных полей,
магнитная
индукция B в точке А
определяется
интегралом
,где
Разложим вектор
dB на две
составляющие:
перпендикулярную
плоскости кольца
dB2 и
параллельную этой плоскости dB1.
Тогда
Заметив, что
из соображений симметрии и что
от различных элементов dl
сонаправлены, заменим векторное
суммирование (интегрирование) скалярным:
(поскольку dl
перпендикулярен r и,
следовательно
).
Таким образом,
;
;
Окончательно получим
Подставив численные
значения, получим
B =
6,3 мкТл.
Задача
5.Определить магнитную индукцию
поля, созданного соленоидом длиной L=5
см и радиусом витка R
=2 см , в точке, отстоящей от конца соленоида
на расстояние а = 0,5 см, если по соленоиду
протекает ток I =
50 А.Cоленоид имеет
N =20 витков.
R
= 0,02 м = 2.10-2
м
L
= 0,05 м = 5.10-2
м
а = 0,005 м = 5.10-3
м
I = 50 А
Рассчитаем
магнитную индукцию в точке А.Для этого
выберем на соленоиде элемент dL,
содержащий n = N/L
витков на единицу длины. При токе I
его можно рассматривать как круговой
ток IndL, для которого
магнитная индукция равна (см. предыдущую
задачу):
,
так как
,
и
Окончательно получаем:
,
где
и
Подставив численные
значения, получим B = 2,5
мТл.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
13.05.20159.64 Mб38levyi_i_iskusstvo_perevoda.pdf
- #
- #
- #
10.09.2019273.92 Кб6m5.doc
- #
- #
- #
- #
- #
Задачи по Электродинамике ( МАГНИТНОЕ ПОЛЕ ), на тему
Магнитное поле тока. Магнитная индукция. Магнитный поток. Закон Ампера. Сила Лоренца. Магнитные свойства веществ
Из пособия: ГДЗ к задачнику Рымкевич для 10-11 классов по физике, 10-е издание, 2006 г.
В каком направлении повернется магнитная стрелка в контуре с током, как показано на рисунке 89
РЕШЕНИЕ
Обозначить полюсы источника тока, питающего соленоид, чтобы наблюдалось указанное на рисунке 90 взаимодействие
РЕШЕНИЕ
Максимальный вращающий момент, действующий на рамку площадью 1 см2, находящуюся в магнитном поле, равен 2 мкН • м. Сила тока в рамке 0,5 А. Найти индукцию магнитного поля
РЕШЕНИЕ
Рамка площадью 400 см2 помещена в однородное магнитное поле индукцией 0,1 Тл так, что нормаль к рамке перпендикулярна линиям индукции. При какой силе тока на рамку будет действовать вращающий момент 20 мН • м
РЕШЕНИЕ
Плоская прямоугольная катушка из 200 витков со сторонами 10 и 5 см находится в однородном магнитном поле индукцией 0,05 Тл. Какой максимальный вращающий момент может действовать на катушку в этом поле, если сила тока в катушке 2 А
РЕШЕНИЕ
Из проволоки длиной 8 см сделаны контуры: а) квадратный; б) круговой. Найти максимальный вращающий момент, действующий на каждый контур, помещенный в магнитное поле индукцией 0,2 Тл при силе тока в контуре 4 А
РЕШЕНИЕ
Магнитный поток внутри контура, площадь поперечного сечения которого 60 см2, равен 0,3 мВб. Найти индукцию поля внутри контура. Поле считать однородным и перпендикулярным плоскости проводника
РЕШЕНИЕ
Какой магнитный поток пронизывает плоскую поверхность площадью 50 см2 при индукции поля 0,4 Тл, если эта поверхность: а) перпендикулярна вектору индукции поля; б) расположена под углом 45° к вектору индукции; в) расположена под углом 30° к вектору индукции
РЕШЕНИЕ
На рисунке 91 представлены различные случаи взаимодействия магнитного поля с током. Сформулировать задачу для каждого из приведенных случаев и решить ее
РЕШЕНИЕ
Какова индукция магнитного поля, в котором на проводник с длиной активной части 5 см действует сила 50 мН? Сила тока в проводнике 25 А. Проводник расположен перпендикулярно вектору индукции магнитного поля
РЕШЕНИЕ
С какой силой действует магнитное поле индукцией 10 мТл на проводник, в котором сила тока 50 А, если длина активной части проводника 0,1 м? Линии индукции поля и ток взаимно перпендикулярны
РЕШЕНИЕ
Сила тока в горизонтально расположенном проводнике длиной 20 см и массой 4 г равна 10 А. Найти индукцию (модуль и направление) магнитного поля, в которое нужно поместить проводник, чтобы сила тяжести уравновесилась силой Ампера
РЕШЕНИЕ
Проводник ab, длина которого L и масса m, подвешен на тонких проволочках. При прохождении по нему тока I он отклонился в однородном магнитном поле (рис. 92) так, что нити образовали угол α с вертикалью. Какова индукция магнитного поля
РЕШЕНИЕ
В проводнике с длиной активной части 8 см сила тока равна 50 А. Он находится в однородном магнитном поле индукцией 20 мТл. Какую работу совершил источник тока, если проводник переместился на 10 см перпендикулярно линиям индукции
РЕШЕНИЕ
В какую сторону сместится под действием магнитного поля электронный луч в вакуумной трубке, изображенной на рисунке 93
РЕШЕНИЕ
Если к точкам С и D (рис. 94) тонкого металлического листа, по которому проходит электрический ток, подключить чувствительный гальванометр, то в случае наличия магнитного поля (направление линий магнитной индукции показано на рисунке) он покажет возникновение разности потенциалов. Объяснить причину появления разности потенциалов между точками С и D. Сравнить потенциалы этих точек
РЕШЕНИЕ
Какая сила действует на протон, движущийся со скоростью 10 Мм/с в магнитном поле индукцией 0,2 Тл перпендикулярно линиям индукции
РЕШЕНИЕ
В направлении, перпендикулярном линиям индукции, влетает в магнитное поле электрон со скоростью 10 Мм/с. Найти индукцию поля, если электрон описал в поле окружность радиусом 1 см
РЕШЕНИЕ
Протон в магнитном поле индукцией 0,01 Тл описал окружность радиусом 10 см. Найти скорость протона
РЕШЕНИЕ
В однородное магнитное поле индукцией В = 10 мТл перпендикулярно линиям индукции влетает электрон с кинетической энергией WK = 30 кэВ. Каков радиус кривизны траектории движения электрона в поле
РЕШЕНИЕ
Протон и α-частица влетают в однородное магнитное поле перпендикулярно линиям индукции. Сравнить радиусы окружностей, которые описывают частицы, если у них одинаковы: а) скорости; б) энергии
РЕШЕНИЕ
Электрон движется в однородном магнитном поле индукцией В = 4 мТл. Найти период Т обращения электрона
РЕШЕНИЕ
Линии напряженности однородного электрического поля и линии индукции однородного магнитного поля взаимно перпендикулярны. Напряженность электрического поля 1 кВ/м, а индукция магнитного поля 1 мТл. Какими должны быть направление и модуль скорости электрона, чтобы его движение было прямолинейным
РЕШЕНИЕ
В масс-спектрографе (рис. 95) заряженные частицы ускоряются на участке KL электрическим полем и, попав в магнитное поле индукцией Ву описывают окружность радиусом R. Вывести формулу для расчета удельного заряда частицы q/my если ускоряющее напряжение равно U. Начальную скорость частицы считать равной нулю
РЕШЕНИЕ
Электрон, влетающий в однородное магнитное поле под углом 60° к направлению поля, движется по винтовой линии радиусом 5 см с периодом обращения 60 мкс. Какова скорость электрона, индукция магнитного поля и шаг винтовой линии
РЕШЕНИЕ
По графику (рис. 96) определить магнитную проницаемость стали при индукции В0 намагничивающего поля 0,4 и 1,2 мТл
РЕШЕНИЕ
Во сколько раз изменится магнитный поток, если чугунный сердечник в соленоиде заменить стальным таких же размеров? Индукция намагничивающего поля В0 = 2,2 мТл. Использовать рисунок 96
РЕШЕНИЕ
Сила тока в медной ленте I = 50 А. Направление тока перпендикулярно сечению пластинки. Ленту помещают в однородное магнитное поле индукцией В = 2 Тл, направленной так, как показано на рисунке 97. Определить напряженность электрического поля, возникающего в проводнике. Ширина ленты а = 0,1 см и высота h = 2 см
РЕШЕНИЕ