Закон всемирного тяготения как найти ускорение

Все тела взаимодействуют друг с другом. Так, две материальные точки, обладающие массой, притягиваются друг к другу с некоторой силой, которую называют гравитационной, или силой всемирного тяготения.

Сила всемирного тяготения — сила, с которой все тела притягиваются друг к другу.

Закон всемирного тяготения

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними.

F — сила всемирного тяготения, m1 и m2 — массы двух притягивающихся друг к другу тел, R — расстояние между этими телами, G — гравитационная постоянная (G = 6,67∙10–11 Н ∙ м2/кг2).

Сила всемирного тяготения направлена по линии, соединяющей центры двух тел.

Гравитационная постоянная численно равна силе притяжения между двумя точечными телами массой 1 кг каждое, если расстояние между ними равно 1 м. Если R = 1 м, m1 = 1 кг и m2 = 1 кг, то F = G.

G = 6,67∙10–11 Н ∙ м2/кг2.

Сила тяжести

Согласно закону всемирного тяготения, все тела притягиваются между собой. Так, Земля притягивает к себе падающий на нее мяч, а мяч притягивает к себе Землю.

Сила тяжести — сила, с которой Земля притягивает к себе тела.

Сила тяжести действует на все тела, находящиеся в поле притяжения Земли. Она всегда направлена к центру нашей планеты.

Расчет силы тяжести на Земле

Силу тяжести можно рассчитать с помощью закона всемирного тяготения. Тогда одна из масс будет равна массе земли. Обозначим ее большой буквой M. Вторая масса будет принадлежать телу, притягивающемуся к Земли. Обозначим его m. В качестве R будет служить радиус Земли. В таком случае сила тяжести будет определяться формулой:

Вывод формулы ускорения свободного падения

Согласно второму закону Ньютона, сила, которая действует на тело, сообщает ему ускорение. Поэтому силу тяжести также можно выразить через это ускорение. Обозначим его g — ускорение свободного падения.

Пример №1. Мальчик массой 50 кг прыгнул под углом 45 градусов к горизонту. Найти силу тяжести, действующую на него во время прыжка.

Сила тяжести зависит только от массы тела и ускорения свободного падения. Направлена она всегда к центру Земли, и от характера движения тела не зависит. Поэтому:

Мы получили две формулы для вычисления силы тяжести: одну — исходя из закона всемирного тяготения, вторую — исходя из второго закона Ньютона. Приравняем правые части формул и получим:

Отсюда:

Формула расчета ускорения свободного падения

Вместо массы и радиуса Земли можно взять массы и радиусы любых планет. Так можно рассчитать ускорение свободного падения для любого космического тела.

Пример №2. Рассчитать ускорение свободного падения на Луне. Считать, что радиус Луны равен 1736 км, а ее масса — 7,35∙1022 кг.

Переведем километры в метры: 1736 км = 1736000 м.

Первая космическая скорость

Исаак Ньютон смог доказать, что причиной падения тел на Землю, движения Луны вокруг Земли и движения Земли вокруг Солнца является сила тяготения. Если камень бросить в горизонтальном направлении, его траектория будет отклонена от прямой линии под действием земной силы тяжести. Если же придать этому камню большую скорость, камень приземлится на большем расстоянии. Значит, существует такая скорость, при которой камень не приземлится, а начнет бесконечно вращаться вокруг Земли.

ОпределениеПервая космическая скорость — минимальная (для заданной высоты над поверхностью планеты) горизонтальная скорость, которую необходимо придать объекту, чтобы он совершал движение по круговой орбите вокруг планеты.

Вывод формулы первой космической скорости

Когда тело массой m вращается на некоторой высоте h, расстояние между ним и центром Земли равно сумме этой высоты и радиуса Земли. Поэтому сила тяготения между этим телом и Землей будет равна:

Движение тела вокруг планеты — частный случай движения тела по окружности с постоянной по модулю скоростью. Мы уже знаем, что такое тело движется с центростремительным ускорением, направленным к центру окружности. В данном случае центростремительное ускорение будет направлено к центру Земли. Это ускорение сообщает телу сила тяготения.

Так как тело движется на некоторой высоте h от поверхности Земли, центростремительное ускорение будет определяться формулой:

Подставив это ускорение в формулу второго закона Ньютона, получим силу, с которой Земля притягивает к себе тело массой m:

Приравняем правые части формул, следующих из закона всемирного тяготения и второго закона Ньютона, и получим:

Отсюда скорость, с которой должно тело массой m бесконечно вращаться вокруг Земли на высоте h, равна:

Скорость бесконечно вращающегося вокруг Земли тела не зависит от его массы. Она зависит только от высоты, на которой оно находится. Чем выше высота, тем меньше скорость его вращения.

Тело, вращающееся вокруг планеты, называется ее спутником. Чтобы любое тело стало спутником Земли, нужно сообщить ему некоторую скорость на поверхности планеты в горизонтальном направлении. Высота h в этом случае равна 0. Тогда эта скорость будет равна:

8 км/с — первая космическая скорость Земли.

Пример №3. Рассчитать первую космическую скорость для Венеры. Считать, что масса Венеры равна 4,87∙1024 кг, а ее радиус равен 6052 км.

Задание EF18521

Сила гравитационного притяжения между двумя шарами, находящимися на расстоянии 2 м друг от друга, равна 9 нН. Какова будет сила притяжения между ними, если расстояние увеличить до 6 м? Ответ выразите в наноньютонах (нН).


Алгоритм решения

  1. Записать исходные данные.
  2. Записать закон всемирного тяготения.
  3. Установить зависимость между силой гравитационного притяжения и расстоянием между телами.
  4. На основании вывода о зависимости двух величин вычислить гравитационное притяжение между двумя шарами при изменении расстояния между ними.

Решение

Запишем исходные данные:

  • Расстояние между двумя шарами в первом случае: R1 = 2 м.
  • Расстояние между двумя шарами во втором случае: R2 = 6 м.
  • Сила гравитационного притяжения между двумя шарами в первом случае: F1 = 9 нН.

Запишем закон всемирного тяготения:

Из формулы видно, что сила гравитационного притяжения обратно пропорционально квадрату расстояния между телами массами m1 и m2.

R2 больше R1 втрое (6 больше 2 в 3 раза). Следовательно, расстояние между шарами тоже увеличилось втрое. В таком случае сила гравитационного притяжения между ними уменьшится в 32 раз, или в 9 раз. Так как в первом случае эта сила была равна 1 нН, то во втором она составит в 9 раз меньше, или 1 нН.

Ответ: 1

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17569

Две звезды одинаковой массы m притягиваются друг к другу с силами, равными по модулю F. Чему равен модуль сил притяжения между другими двумя звёздами, если расстояние между их центрами такое же, как и в первом случае, а массы звёзд равны 3m и 4m?

а) 7F

б) 9F

в) 12F

г) 16F


Алгоритм решения

1.Записать закон всемирного тяготения.

2.Применить закон всемирного тяготения для первой и второй пары звезд.

3.Из каждого выражения выразить расстояние между звездами.

4.Приравнять правые части уравнений и вычислить силу притяжения между второй парой звезд.

Решение

Закон всемирного тяготения выглядит так:

Примерим этот закон для первой и второй пары звезд:

Выразим квадраты радиусов, так как они в обоих случаях одинаковые:

Приравняем правые части выражений и выразим силу притяжения во втором случае:

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18678

Высота полёта искусственного спутника над Землёй увеличилась с 400 до 500 км. Как изменились в результате этого скорость спутника и его потенциальная энергия?

Для каждой величины определите соответствующий характер изменения:

1) увеличилась
2) уменьшилась
3) не изменилась

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Скорость

спутника

Потенциальная энергия спутника

Алгоритм решения

1.Записать закон всемирного тяготения и формулу центростремительного ускорения для движения тела по окружности с постоянной по модулю скоростью.

2.Установить зависимость скорости от высоты спутника над поверхностью Земли.

3.Записать формулу потенциальной энергии и установить, как она зависит от высоты.

Решение

На спутник действует сила притяжения Земли, которая сообщает ему центростремительное ускорение:

F=maц=GmM(R+h)2

Отсюда центростремительное ускорение равно:

aц=GM(R+h)2

Но центростремительное ускорение также равно:

aц=v2(R+h)

Приравняем правые части выражений и получим:

GM(R+h)2=v2(R+h)

v2=MG(R+h)(R+h)2=MG(R+h)

Квадрат скорости спутника обратно пропорционален радиусу вращения. Следовательно, при увеличении высоты увеличивается радиус вращения, а скорость уменьшается.

Потенциальная энергия спутника определяется формулой:

Ep = mgh

Видно, что потенциальная энергия зависит от высоты прямо пропорционально. Следовательно, при увеличении высоты потенциальная энергия спутника тоже увеличивается.

Верная последовательность цифр в ответе: 21.

Ответ: 21

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17578

Искусственный спутник обращается вокруг планеты по круговой орбите радиусом 4000 км со скоростью 3,4 км/с. Ускорение свободного падения на поверхности планеты равно 4 м/с2. Чему равен радиус планеты? Ответ запишите в километрах.


Алгоритм решения

1.Записать исходные данные. Перевести единицы измерения в СИ.

2.Записать формулу ускорения свободного падения и выразить через нее радиус планеты.

3.Записать формулу, раскрывающая взаимосвязь между линейной скоростью и радиусом окружности, по которой движется тело.

4.Записать закон всемирного тяготения применительно к спутнику.

5.Вывести формулу для расчета радиуса планеты.

6.Подставить известные данные и произвести вычисление.

Решение

Запишем исходные данные:

 Линейная скорость спутника: v = 3,4 км/с, или 3,4∙103 м/с.

 Радиус орбиты спутника: Rо = 4000 км, или 4∙106 м.

 Ускорение свободного падения у поверхности планеты: g = 4 м/с2.

Ускорение свободного падения определяется формулой:

Отсюда радиус равен:

Линейная скорость и радиус орбиты связываются формулой:

Используя закон всемирного тяготения, запишем силы, с которой притягивается спутник к планете:

Согласно второму закону Ньютона, сила — это произведение массы на ускорение тела. Следовательно:

Отсюда:

Поделим обе части выражения на массу спутника и радиус его орбиты. Получим:

Из этой формулы выразим массу планеты:

Подставим массу планеты в формулу для нахождения ее радиуса:

Подставляем известные данные и вычисляем:

Этот радиус соответствует 3400 км.

Ответ: 3400

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 18k

Закон всемирного тяготения – фундаментальный закон природы, согласно которому все предметы притягиваются между собой. Это проявление гравитационного взаимодействия. Если хотите узнать о гравитации больше – читайте наш отдельный материал.

На своем телеграм-канале мы ежедневно отбираем полезную и интересную информацию. Подписывайтесь!

Закон всемирного тяготения: формулировка, примеры

Все тела притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорционально квадрату расстояния между ними.

Закон всемирного тяготения: формулировка, примеры

Примеры действия закона всемирного тяготения: 

  • яблоко, летящее на голову Ньютона; 
  • движение небесных тел; 
  • свет, поглощаемый черной дырой.

Закон всемирного тяготения был сформулирован Ньютоном в 1682 году. Размышляя над законами движения планет, которые ранее были открыты Кеплером, Ньютон хотел узнать, какие силы действуют на небесные тела и заставляют их двигаться определенным образом.

Вопросы на закон всемирного тяготения

Вопрос 1. Если все предметы притягиваются, то почему Луна не падает на Землю, Земля не падает на Солнце и т.д.?

Ответ. Все дело в скорости движения небесных тел. Луна движется вокруг Земли со скоростью равной примерно 1 км/с. Этой скорости недостаточно, чтобы покинуть орбиту, и достаточно, чтобы Луна не упала на Землю. Можно сказать, что Луна падает на Землю, но это падение никогда не заканчивается.

Вопрос 2. Что из этих величин является фундаментальной физической константой: гравитационная постоянная G или ускорение свободного падения g?

Ответ. Гравитационная постоянная G является одинаковой для всех тел в природе и в любой точке Вселенной. Ее значение:

Вопросы на закон всемирного тяготения

Ускорение свободного падения g в пределах Земли варьируется в зависимости от координат и высоты подъема тела над поверхностью. На других планетах значение g будет совершенно иным, так как оно зависит от массы и размеров небесного тела. 

Вопрос 3. Как развивалась теория тяготения после Ньютона и до наших дней?

Ответ. Классическая теория тяготения Ньютона господствовала в физике на протяжении более чем двух веков. В 1915 году Эйнштейн показал, что она является частным случаем общей теории относительности.

Вопрос 4. Что такое первая и вторая космические скорости?

Ответ. Первая космическая скорость – скорость, с которой спутник должен двигаться вокруг Земли или другого космического объекта, чтобы оставаться на орбите и не падать. Для Земли значение первой космической скорости равно 7,91 км/с.
Вторая космическая скорость – скорость, необходимая для того, чтобы покинуть орбиту небесного тела. Значение: 11,2 км/с.

Вопрос 5. С гравитационной постоянной разобрались. Ну а что такое гравитационная неустойчивость?

Ответ. Гравитационная неустойчивость – флуктуации (возмущения, небольшие отклонения) плотности и скорости вещества в пространстве под действием сил тяготения. Гравитационная неустойчивость является причиной возникновения галактик, звезд и звездных скоплений.

Кстати! Для наших читателей действует скидка 10% на любой вид работы.

Задачи на закон всемирного тяготения с решениями

Хотите узнать, как решать задачи на закон всемирного тяготения? Вот памятка по решению любых задач и отдельная статья про задачи на движение тел под действием силы тяжести. 

Задача №1. Применение закона всемирного тяготения

Условие 

Два одинаковых шара притягиваются друг к другу с силой 6,67*10^-5 Ньютона. Масса каждого шара равна 20 тонн. Найдите расстояние между шарами. 

Решение

По закону всемирного тяготения

Задача №1. Применение закона всемирного тяготения

Ответ: 20 метров.

Задача №2. Расчет ускорения свободного падения на Марсе

Условие

Каково ускорение свободного падения на Марсе?

Решение

Сначала по справочнику найдем значения массы и радиуса Марса:

Задача №2. Расчет ускорения свободного падения на Марсе

По закону всемирного тяготения для тела массы m на Марсе:

Задача №2. Расчет ускорения свободного падения на Марсе

Сократим m и получим формулу для ускорения свободного падения:

Задача №2. Расчет ускорения свободного падения на Марсе

Ответ: 3,72 метра на секунду в квадрате.

Задача №3. Нахождение первой космической скорости на поверхности Луны

Условие

Какова первая космическая скорость на поверхности Луны?

Решение

Первая космическая скорость у поверхности планеты находится по формуле:

Задача №3. Нахождение первой космической скорости на поверхности Луны

Также из этой задачи можно найти ускорение свободного падения на Луне. Оно равно 1,61 м/с2.

Ответ: 1,7 км/с.

Задача №4. Изменение ускорения свободного падения с четом высоты

Условие

Воздушный шар поднимается на высоту 6 километров. Как изменится ускорение свободного падения на этой высоте?

Решение

Запишем закон всемирного тяготения сначала для поверхности Земли, а потом для высоты h. Обозначим ускорение свободного падения на уровне моря как g нулевое.

Задача №4. Изменение ускорения свободного падения с четом высоты

Ответ: Ускорение свободного падения уменьшится на 0,02 м/с2.

Задача №5. Применение закона всемирного тяготения

Условие

Определите, какая из сил притяжения больше: сила между Землей и Луной или сила между Луной и Солнцем

Решение

Чтобы понять, какая сила больше, нужно их сравнить.

Задача №5. Применение закона всемирного тяготения

Учитывая, что расстояние между Землей и Луной гораздо меньше, чем расстояние межу Землей и Солнцем, вместо расстояния между Луной и Солнцем можно взять расстояние Земля-Солнце.

Задача №5. Применение закона всемирного тяготения

Ответ: сила притяжения между Луной и Солнцем примерно в два раза больше.

Нужна помощь в решении задач и других заданий? Обращайтесь в профессиональный студенческий сервис.

В статье обсуждается несколько подходов к нахождению ускорения свободного падения. 

Ускорение свободного падения — это ускорение свободного падения объекта в вакууме с равномерной скоростью, несмотря на его массу, из-за силы тяжести. С помощью законов Ньютона, которые описывают силу тяжести, мы можем обнаружить ускорение силы тяжести или ускорение силы тяжести.

Как найти ускорение свободного падения

Как найти ускорение свободного падения g?

Ускорение свободного падения зависит от гравитирующего тела большой массы M, но не зависит от тела m малой массы. Вот почему тела небольшой массы падают вниз к гравитирующему телу, несмотря на его массу. Поэтому ускорение свободного падения называют ускорение свободного падения or ускорение силы тяжести, обозначается как ‘g’.

Поскольку сила вызывает такое ускорение, мы можем определить значение g с помощью нескольких подходов, использующих Законы движения Ньютона.

Прочтите, как рассчитать массу по гравитационной силе.

Как найти ускорение свободного падения с помощью законов Ньютона

Давайте рассчитаем значение g, используя второй закон движения Ньютона и закон всемирного тяготения.

Второй закон движения Ньютона дает силу тяжести между объектом и землей, тогда как закон всемирного тяготения дает силу гравитации между двумя объектами. Когда мы сравниваем обе силы гравитации, мы получаем значение ускорения свободного падения g.

Как найти ускорение свободного падения с помощью законов Ньютона

Законы Ньютона для определения значения g

Сила тяжести Fg определяется Второй закон Ньютона является,

 Fg = мг …………………… .. (1)

Сила тяжести Fg определяется закон всемирного тяготения является,

Fg=GMм/об2

Где M — масса гравитирующего объекта, т. Е. Земли.

r — расстояние между центром масс объекта и земли.

А G — постоянная гравитационной пропорциональности.

Сравнивая обе силы тяжести Fg в уравнениях (1) и (2),

мг=ГМм/р2

г=ГМм/мр2

г=Гм/р2

Вышеупомянутая формула является стандартной формулой для расчета ускорения свободного падения g.

Как вы заметили, масса падающего тела m аннулируется при определении g, так как гравитационное ускорение зависит только от гравитации земной массы M.

Узнайте больше о законах Ньютона.

Рассчитайте ускорение свободного падения шара, падающего на земная поверхность. Масса земли 6 х 1024 кг, а расстояние между объектом и землей составляет 6.38 X 106 м. (G = 6.67 x 10-11 Нм2/ кг2)

Данный:

М = 6 х 1024 kg

г = 6.38 Х 106 m

G = 6.67 х 10-11 Nm2/ кг2

Найти: g =?

Формула:

Fg = мг

Решения:

Сила тяжести из-за Второй закон Ньютона находится в движении,

Fg = мг

г=Фg/m

Подставляя закон гравитации формулу (2) в приведенное выше уравнение,

г=ГМм/мр2

г=Гм/р2

Подставляя все значения,

г = 9.86

Ускорение свободного падения падающего у земной поверхности шара составляет 9.86 м / с.2.

Сила тяжести — это сила тяжести, которая различна для разных масс M. Следовательно, значение g также немного отличается для других планет из-за разной массы.

Как изменяется гравитационное ускорение?

Разные значения g для разных масс

Прочтите, как рассчитать массу по силе и расстоянию.

Луна имеет массу 7.35 X 10.22 кг, а расстояние между центром масс 1.74 X 106м. Вычислите ускорение свободного падения космонавта, идущего по Луне. 

Данный:

М = 7.35 х 1022 kg

г = 1.74 Х 106m

G = 6.67 х 10-11 Nm2/ кг2

Найти: г =?

Формула:

г=ГМ/р2

Решения:

Ускорение свободного падения космонавта рассчитывается с использованием Законы Ньютона,

г=ГМ/р2

Подставляя все значения,

г = 1.619

Ускорение свободного падения космонавта на Луне составляет 1.619 м / с.2.

Если объект движется на определенной высоте h от гравитирующей поверхности; подобно тому, как спутник вращается на высоте h от земли, радиус между ними становится R (r + h). Следовательно, величина ускорения свободного падения g также изменяется из-за изменения радиуса r

Как изменяется гравитационное ускорение?

Разные значения g для разного радиуса

Узнать больше о наклонной плоскости.

Если спутник движется по орбите на высоте около 280 км над земной поверхностью, какое гравитационное ускорение он испытывает? 

Данный:

М = 6 х 1024 kg

G = 6.67 х 10-11 Nm2/ кг2

г = 6.38 Х 106 m

h = 280 км = 0.28 X 106 m

R = (r + h) = (6.38 Х 106 + 0.28 Х 106) = 6.66 х 106 m

Найти: g =?

Формула:

г=ГМ/р2

Решения:

Ускорение свободного падения рассчитывается с использованием Законы Ньютона,

г=ГМ/р2

Подставляя все значения,

г = 9.02

Ускорение свободного падения на спутнике, вращающемся над землей, составляет 9.02 м / с.2.

Как найти ускорение свободного падения с помощью третьего закона Кеплера

Рассчитаем значение g, используя Третий закон Кеплера следующим образом:

Третий закон Кеплера касается орбитального движения планет, согласно которому период обращения по орбите пропорционален ее большой полуоси. Период времени планеты получается путем сравнения центростремительной силы и силы тяжести, обусловленной законом всемирного тяготения. 

Как найти ускорение свободного падения с помощью законов Кеплера

Законы Кеплера найти значение g
(Кредит: Shutterstock)

Компания центростремительная сила на орбитальной планете

Fc=мв2/r

Сравнение центростремительная сила уравнение (4) с закон всемирного тяготения (2)

mv2/ г = Гм/р2

v2=ГМ/р

Скорость = Расстояние / Время

Расстояние до планеты, когда она движется по орбите = 2πr

v=2πr/T

v2=4π2r2

Подставляя указанное выше уравнение в уравнение (5),

4p2r2/T2=ГМ/р

T2=4π2r3/ГМ

Выше уравнение период времени на орбите планеты.

Давайте выведем гравитационное ускорение формула по времени.

Используя уравнение (3), M=gr2/G

Подставляя значение M в уравнение (6),

T2=4π2r3/гр2

г=4π2р/т2

Вот как мы можем вычислить значение g, используя период обращения объекта T.

Спутнику, движущемуся по орбите около 500 км, требуется 90 минут, чтобы совершить один оборот вокруг Земли. Какое будет гравитационное ускорение, которое он испытывает? 

 Данный:

г = 6.38 Х 106 m

h = 500 км

R = (R + h) = 6.88 Х 106 m

T = 90 мин. = 90 X 60 = 5.4 X 103 сек

Найти: g =?

Формула:

г=4π2р/т2

Решения:

Ускорение свободного падения на орбитальном спутнике рассчитывается по формуле

г=4π2р/т2

Подставляя все значения,

г = 9.28

Ускорение свободного падения на орбитальном спутнике Земли составляет 9.28 м / с.2

Узнать больше об угловом движении.

Как найти ускорение свободного падения, используя сферически-симметричные тела

Рассчитаем значение g для сферически симметричных тел следующим образом:

Гравитационно притягивающие тела обладают сферически-симметричным распределением массы, поскольку вся их масса сосредоточена в его центре. Следовательно, мы можем достичь ускорения свободного падения для симметричных тел, используя закон всемирного тяготения Ньютона. 

Как найти ускорение свободного падения, используя сферически-симметричные тела

Сферически симметричное тело
(Кредит: физика)

Поскольку, масса = плотность / объем

Когда тела, имеющие симметричное распределение массы,

Где ρ0 плотность объекта

Подставляя приведенное выше уравнение в Закон тяготения Ньютона уравнение (2)

Подставляя Уравнение второго закона Ньютона (1) в приведенное выше уравнение,

Вот как мы можем вычислить значение g, используя плотность объекта ρ0.

Рассчитайте ускорение свободного падения шара, падающего на землю, который имеет плотность около 17 кг / см.3.

Данный:

G = 6.67 х 10-11 Nm2/ кг2

г = 6.38 Х 106 m

ρ0 = 17 кг / см3 = 17 х 103 г / см3

Найти: g =?

Формула:

Решения:

Ускорение свободного падения шара рассчитывается по формуле

Подставляя все значения,

г=(2893.71*10-2) / 3

г = 9.64

Ускорение свободного падения при падении мяча на землю составляет 9.64 м / с.2


Ускорение силы тяжести


Ускорение силы тяжести

3.9

Средняя оценка: 3.9

Всего получено оценок: 105.

3.9

Средняя оценка: 3.9

Всего получено оценок: 105.

Процесс изменения скорости при движении физического тела характеризуется ускорением. Ускорение силы тяжести (обозначается буквой g) возникает в результате влияния силы тяжести, которая действует на любое тело у поверхности Земли или другой планеты. Разберемся от чего зависит значение g и как его определяют.

Основные формулы для равноускоренного движения

Равноускоренное движение — самый простой вид неравномерного движения. Равноускоренным называется движение с ускорением, постоянным по модулю и направлению:

$ a = {Δvover Δt} = const $ (1),

где:

Δv — изменение скорости (“дельта v “), м/с;

Δt — промежуток времени, (“дельта t “)за которое произошло изменение скорости, с.

Из формулы (1) следует, что размерность ускорения будет выражаться в метрах на секунду в квадрате:

$ {1 м/сover 1 c} = 1 м/с^2 $ (2).

Второй закон Ньютона гласит:

$ F = m * a $ (3),

где:

F — сила, действующая на тело, Н;

m — масса тела, кг;

a — ускорение, м/с2.

Сила тяжести и ускорение свободного падения

При свободном падении на Землю все тела, независимо от их массы, движутся одинаково. Свободное движение является равноускоренным движением. Ускорение, с которым падают на Землю тела в пустоте, называется ускорением свободного падения (или ускорением силы тяжести). Условие пустоты или, что тоже самое, вакуума, требуется для исключения влияния сопротивления атмосферного воздуха. Сила притяжения Fт со стороны Земли на тело массой m, называется силой тяжести:

$ F_т = m * g $ (4),

Определением ускорения силы тяжести впервые систематически занимался Галилео Галилей — итальянский математик, физик, астроном. Будучи профессором университета в городе Пиза, Галилей измерял время падения предметов с высоты местной, слегка наклонной, башни.

Галилео Галилей измеряет ускорение свободного падения:

Рис. 1. Галилео Галилей измеряет ускорение свободного падения.

.

В результате этих наблюдений он пришел к следующим выводам:

  • Время падения не зависит от массы тела. Все тела падают одинаково;
  • Падение тел представляет собой равноускоренное движение с ускорением $ g = 9,81{ мover c^2} $ .

И хотя это открытие датировано 1589г., современное, общепринятое среднее значение g практически не отличается от этого значения. Когда от расчетов не требуется высокой точности, то принимают, что модуль g равен 10 м/с2.

Последовавшие за Галилеем более точные измерения показали, что значение g не является абсолютной константой, а зависит от местоположения измерений в разных точках Земли. Ответ на этот вопрос нашел английский ученый Исаак Ньютон.

Закон всемирного тяготения

В 1682 г. Ньютон открыл закон всемирного тяготения, из которого следует:

  • все тела притягиваются друг к другу;
  • сила тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними;
  • векторы сил тяготения направлены вдоль прямой, соединяющей тела.

Этот закон универсален, и для случая пары тел, одно из которых является произвольным телом массой m, а второй — Земля, в виде формулы выглядит так:

$ F_т = G * {{m * Mз }over {(R_з + h)^2} } $ (5),

где:

Mз — масса Земли, кг;

Rз — радиус Земли, м;

h — высота, на которой находится тело, относительно поверхности Земли, м;

G — гравитационная постоянная, равная 6,6720 * 10-11 Н*м2 * кг-2.

Из формул (4) и (5) следует, что:

$ g = G * {{ Mз }over {(R_з + h)^2 } }$ (6)

Из (6) следует, что ускорение силы тяжести будет зависеть от высоты h и величины радиуса Земли, который для обычных расчетов принимается равным примерно 6400 км. Но поскольку форма Земли не является идеальным шаром, а сплюснута к полюсам, то точные значения g будут отличаться от среднего значения в 9,81 м/с2:

  • максимальное значение gмакс = 9,83 м/с2 — на полюсах Земли, где Rз меньше;
  • минимальное значение gмин = 9,79 м/с2 — на экваторе Земли, где Rз больше.

Рис. 2. Зависимость ускорения свободного падения на полюсах, экваторе и от вращения Земли.

Из формулы (6) также следует, что ускорение силы тяжести на других планетах, имеющих массу, отличающуюся от массы Земли, будет для космонавтов значительно отличаться от привычных земных условий. Так, например:

  • На Марсе — gМарса = 3,86 м/с2;
  • На Меркурии — gМеркурия = 3,7 м/с2;
  • На Луне — gЛуны = 1,62 м/с2;
  • На Нептуне — gНептуна = 11,0 м/с2.

Как определяют ускорение силы тяжести

Для точного измерения силы тяжести, а значит, и ускорения, используется прибор, называемый гравиметром. Прибор применяется при поиске полезных ископаемых и для сбора информации археологами, палеонтологами, гидрологами и представителями других профессий, изучающих поверхность Земли.

Гравиметры:

Рис. 3. Гравиметры:.

Следует упомянуть еще два фактора, влияющих на значение ускорения свободного падения:

  • Известно, что Земля вращается вокруг своей оси, имея при этом так называемое центростремительное ускорение, которое влияет на величину ускорения свободного падения;
  • Масса Земли распределена неравномерно, например, в местах расположения больших месторождений металлических руд ускорение силы тяжести будет больше, а там, где есть пустоты (газовые месторождения) ускорение будет несколько меньше.

Эти факторы дают очень малые отклонения от средних значений g , но зато их регистрация позволяет, например, геологам находить новые месторождения полезных ископаемых.

Заключение

Что мы узнали?

Итак, мы узнали, что такое ускорение силы тяжести. Сила тяжести возникает вследствие действия силы гравитации, подчиняющейся закону Ньютона (формула (5)). На Земле среднее значение ускорения силы тяжести gЗемли равно 9,81 м/с2. Для точного определения ускорения силы тяжести требуется использование современных приборов, называемых гравиметрами.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Александр Коновалов

    4/5

Оценка доклада

3.9

Средняя оценка: 3.9

Всего получено оценок: 105.


А какая ваша оценка?

Сила всемирного тяготения. Искусственные спутники

  1. Гравитационное взаимодействие
  2. Закон всемирного тяготения
  3. Ускорение свободного падения на поверхности для различных планет
  4. Космические скорости
  5. Искусственные спутники Земли
  6. Задачи

п.1. Гравитационное взаимодействие

Согласно современным представлениям, все тела, обладающие массой, притягиваются друг к другу. Это взаимодействие называется гравитационным.

Таким образом, масса проявляется в природе двумя качественно разными способами.

Инертная масса — мера инертности тел (второй закон Ньютона), дающая связь между силой и вызываемым ею ускорением.
Гравитационная масса — мера гравитационного взаимодействия тел (закон всемирного тяготения), определяющая силу взаимного притяжения.

Нужно подчеркнуть, что инертная масса и гравитационная масса возникают в механике при рассмотрении совершенно разных явлений, и ниоткуда не следует, что они должны быть равны.

Тем не менее, уже сам Ньютон доказал равенство этих масс с точностью 10-3.

На сегодняшний день (эксперимент 2009 г.) этот факт подтвержден с точностью 10-13.

Принцип эквивалентности
Значения инертной и гравитационной массы одного и того же тела равны.

п.2. Закон всемирного тяготения

Закон всемирного тяготения
Две материальные точки массами (m_1) и (m_2) притягиваются по направлению друг к другу с силой (F), прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния (r) между ними: $$ F=Gfrac{m_1m_2}{r^2} $$ Коэффициент пропорциональности называется гравитационной постоянной;
она одинакова для всех тел природы и в системе СИ равна $$ G=6,67cdot 10^{-11}frac{text{Н}cdot text{м}^2}{text{кг}^2} $$

Физический смысл гравитационной постоянной
Если два тела массой по 1 кг находятся на расстоянии 1 м друг от друга, сила гравитационного взаимодействия между ними равна $$ F=Gcdot 1frac{text{кг}^2}{text{м}^2}=6,67cdot 10^{-11} text{Н} $$

Закон всемирного тяготения выполняется для тел, размерами которых можно пренебречь, т.е. для материальных точек. Но его применение можно расширить.

При рассмотрении небесных тел (Солнца, планет и их спутников) в первом приближении их можно считать однородными идеальными сферами с одинаковой плотностью вещества внутри. Как показывает теория, в такой модели небесное тело можно заменить материальной точкой, совпадающей с его центром, с массой полностью сосредоточенной в этом центре.

В этом случае для применения закона всемирного тяготения открываются дополнительные возможности. Например, можно описывать движение небольшого тела на поверхности планеты, «сжимая» всю планету в материальную точку, от которой тело удалено на расстояние, равное радиусу планеты.

п.3. Ускорение свободного падения на поверхности для различных планет

Найдем силу, с которой Земля притягивает небольшое тело массой m, расположенное на её поверхности.

Будем считать Землю сферическим однородным телом.
Масса Земли (M_oplus=5,97cdot 10^{24} text{кг}),
радиус Земли (R_oplus=6370 text{км}).
Допущение об однородности позволяет перейти к модели, в которой вся масса Земли сосредоточена в её центре. Расстояние от центра до поверхности, на которой находится тело, – это радиус Земли.

Получаем, что сила притяжения между Землей и телом: $$ F=Gfrac{M_oplus m}{R^2_oplus} $$

По своей природе, полученная сила является ничем иным, как силой тяжести (F=mg), с которой мы уже знакомы (см. §22 данного справочника).

Значит, (Gfrac{M_oplus m}{R^2_oplus}=mg), и ускорение свободного падения begin{gather*} g=Gfrac{M_oplus}{R^2_oplus}\[6pt] g=6,67cdot 10^{-11}cdot frac{5,97cdot 10^{24}}{(6,37cdot 10^6)^2}approx 9,81 (text{м/с}^2) end{gather*} Что полностью согласуется с многочисленными экспериментами.

Полученный результат можно обобщить и применить к любому другому небесному телу.

Ускорение свободного падения на поверхности сферической однородной планеты или звезды массой (M) и радиусом (R) прямо пропорционально массе и обратно пропорционально квадрату радиуса: $$ g=Gfrac{M}{R^2} $$

Например, для Луны (g_{text{Л}}=1,62frac{text{м}}{text{с}^2}approx 0,165g_0); для Юпитера (g_{text{Ю}}=23,95frac{text{м}}{text{с}^2}approx 2,442g_0); для Солнца (g_{text{С}}=273,1frac{text{м}}{text{с}^2}approx 27,85g_0). Здесь, (g_0) — ускорение свободного падения у поверхности Земли.

Заметим, что в задачах на гравитационное взаимодействие часто оказывается полезной замена (GM=gR^2).

п.4. Космические скорости

Если тело находится на поверхности Земли, то расстояние между центром планеты, где сосредоточена вся масса, и этим телом равно радиусу Земли (R_oplus).

Если подняться над поверхностью на некоторую высоту (h), расстояние станет равным ((R_oplus+h)). Сила всемирного тяготения (она же – сила тяжести) на этой высоте: $$ F_h=Gfrac{M_oplus m}{(R_oplus+h)^2} $$

Т.к. (GM_oplus=gR^2_oplus), где (g=9,81 (text{м/с})^2), можем также записать удобное на практике выражение: $$ F_h=mgleft(frac{R_oplus}{(R_oplus+h)}right)^2 $$

Пусть мы хотим запустить спутник, который будет летать на высоте (h) по круговой орбите с постоянной скоростью (v). При равномерном движении по окружности ускорение равно отношению квадрата скорости к радиусу орбиты. Получаем: $$ F_h=Gfrac{M_oplus m}{(R_oplus +h)^2}=ma=mfrac{v^2_h}{(R_oplus + h)} $$

Скорость вращения спутника на высоте (h): $$ v_h=sqrt{frac{GM_oplus}{R_oplus + h}} $$

Зная ускорение свободного падения у поверхности Земли (g), можем также записать: $$ v_h=sqrt{frac{gR^2_oplus}{R_oplus + h}} $$

В общем случае:

Чтобы запустить тело на круговую орбиту на высоте (h) над поверхностью сферической однородной планеты или звезды массой (M) и радиусом (R), нужно на этой высоте сообщить телу в горизонтальном направлении скорость $$ v_h=sqrt{frac{GM}{R+h}} $$

Скорости, достаточные для запуска околоземного спутника, межпланетной станции и вылета за пределы Солнечной системы, называют космическими скоростями для Земли.

Первая космическая скорость
Скорость, достаточная для того, чтобы тело, запускаемое с Земли на уровне моря ((h=0)), стало её искусственным спутником, равна $$ v_1=sqrt{frac{GM_oplus}{R_oplus}}=sqrt{gR_oplus}approx 7,92 text{км/с} $$

Вторая космическая скорость
Скорость, достаточная для того, чтобы тело, запускаемое с Земли на уровне моря ((h=0)), преодолело земное притяжение и смогло осуществить межпланетный полет в пределах Солнечной системы, равна $$ v_2=sqrt{frac{2GM_oplus}{R_oplus}}=sqrt{2gR_oplus}approx 11,18 text{км/с} $$

Аналогичные формулы для первой и второй космических скоростей можно получить для любой планеты, как в Солнечной системе, так и за ее пределами.

Нужно только знать массу и радиус планеты.

Можно также рассчитать скорость, необходимую для межзвездных полетов при старте с Земли. Это задача непростая, т.к. необходимо учесть относительное движение трех тел: космического корабля, Земли и Солнца.

Третья космическая скорость
Скорость, достаточная для того, чтобы тело, запускаемое с Земли на уровне моря ((h=0)), преодолело притяжение Земли и Солнца и смогло осуществить межзвездный полет за пределы Солнечной системы, равна $$ v_3=sqrt{(sqrt{2}-1)^2frac{GM_odot}{R_odot}+frac{2GM_oplus}{R_oplus}} approx 16,65 text{км/с} $$

В этой формуле, (M_odot) — масса Солнца, (R_odot) — радиус орбиты вращения Земли вокруг Солнца.

п.5. Искусственные спутники Земли

Искусственный спутник Земли – это космический летательный аппарат, вращающийся вокруг Земли по геоцентрической орбите (эллипсу, в одном из фокусов которого находится Земля).

Круговая орбита спутника в плоскости экватора Земли, двигаясь по которой он находится всё время над одной и той же точкой экватора, называется геостационарной. Такие спутники имеет большое значение для создания систем связи.

Чтобы запустить спутник на орбиту, ему необходимо сообщить скорость, больше чем первая космическая, но меньше чем вторая космическая: $$ 7,92frac{text{км}}{text{с}}lt vlt 11,18frac{text{км}}{text{с}} $$

На практике, получение соответствующей силы тяги ракетного двигателя, способного разогнать ракету до таких скоростей, является сложной технической проблемой.

Вывод спутников на орбиту осуществляется с помощью многоступенчатых ракет-носителей в несколько этапов. На первом этапе ракета стартует и, двигаясь вертикально вверх, проходит плотные слои атмосферы на относительно небольшой скорости, после чего отработавшие двигатели первой ступени отделяются (у Илона Маска — аккуратно возвращаются на Землю). На втором этапе ракета постепенно разворачивается параллельно к поверхности Земли и начинает ускоряться. Когда скорость достигает определенной величины и направления, работа двигателей прекращается, отделяется вторая ступень. Спутник начинает самостоятельное движение по расчетной орбите.

Искусственные спутники Земли используются для решения разнообразных научных и прикладных задач.

В апреле 2020 года на орбите находилось 1388 спутников США, 356 Китая, 167 России, 138 Британии, 78 Японии и 627 других стран. Из них: 1007 спутников связи, 446 спутников для исследования Земли, 97 спутников навигации и GPS, 87 научно-исследовательских спутников и другие космические аппараты.

п.6. Задачи

Задача 1. С какой силой Земля притягивает Луну? Масса Земли (M_oplus=5,97cdot 10^{24} text{кг}), масса Луны (m_{text{л}}=7,36cdot 10^{22} text{кг}), средний радиус лунной орбиты (R=384 text{тыс.км}). А с какой силой Луна притягивает Землю?

Дано:
(M_oplus=5,97cdot 10^{24} text{кг})
(m_{text{л}}=7,36cdot 10^{22} text{кг})
(R=384 text{тыс.км}=3,84cdot 10^8 text{м})
__________________
(F_{text{ЗЛ}}, F_{text{ЛЗ}}-?)

По закону всемирного тяготения $$ F_{text{ЗЛ}}=Gfrac{M_oplus m_{text{л}}}{R^2} $$ Получаем begin{gather*} F_{text{ЗЛ}}=6,67cdot 10^{-11}cdot frac{5,97cdot 10^{24}cdot 7,36cdot 10^{22}}{(3,84cdot 10^8)^2}approx \[6pt] approx 19,9cdot 10^{-11+24+22-16}=1,99cdot 10^{20} (text{Н}) end{gather*} Эта сила направлена от центра Луны к центру Земли.
По третьему закону Ньютона, Луна притягивает Землю с такой же по величине силой, которая направлена противоположно, от центра Земли к центру Луны: $$ overrightarrow{F_{text{ЗЛ}}}=-overrightarrow{F_{text{ЛЗ}}} $$ Ответ: 1,99·1020 Н

Задача 2. Самая высокая гора на Земле – Эверест (8848 м). Во сколько раз сила тяжести на уровне моря больше силы тяжести на вершине Эвереста? Радиус Земли (R_oplus=6370 text{км}).

Дано:
(R_oplus=6370 text{км}=6,37cdot 10^6 text{м})
(h=8848 text{м})
__________________
(frac{F}{F_h}-?)

Сила тяжести для тела массой (m) на уровне моря begin{gather*} F=Gfrac{M_oplus m}{R_oplus^2} end{gather*} На вершине Эвереста begin{gather*} F_h=Gfrac{M_oplus m}{(R_oplus +h)^2} end{gather*} Отношение сил: begin{gather*} frac{F}{F_h}=Gfrac{M_oplus m}{R_oplus^2}:Gfrac{M_oplus m}{(R_oplus +h)^2}= frac{(R_oplus+h)^2}{R^2_oplus}=left(frac{R_oplus+h}{R_oplus}right)^2 =left(1+frac{h}{R_oplus}right)^2 end{gather*} Получаем: begin{gather*} frac{F}{F_h}=left(1+frac{8848}{6,37cdot 10^6}right)^2approx 1,003 end{gather*} Ответ: в 1,003 раза

Задача 3. На поверхности Земли на тело действует силы тяжести (F=54 text{Н}).
Чему будет равна сила тяжести, действующая на это тело на высоте, равной двум радиусам Земли?

Дано:
(F=54 text{Н})
(h=2R_oplus )
__________________
(F_h-?)

Сила тяжести на поверхности Земли begin{gather*} F=Gfrac{M_oplus m}{R_oplus^2} end{gather*} Сила тяжести на высоте (h) begin{gather*} F_h=Gfrac{M_oplus m}{(R_oplus +h)^2}=Gfrac{M_oplus m}{(R_oplus+2R_oplus)^2}=Gfrac{M_oplus m}{9R^2_oplus} end{gather*} Отношение сил: begin{gather*} frac{F}{F_h}=Gfrac{M_oplus m}{R_oplus^2}:Gfrac{M_oplus m}{9R^2_oplus}=9, F_h=frac{F}{9}\[6pt] F_h=frac{54}{9}=6 (text{Н}) end{gather*} Ответ: 6 Н

Задача 4*. Чему равны первая и вторая космические скорости вблизи поверхности Луны? Сравните их со значениями первой и второй космических скоростей у поверхности Земли.
Радиус Луны (R=1740 text{км}), масса Луны (M=7,36cdot 10^{22} text{кг}).

Дано:
(R=1740 text{км}=1,74cdot 10^6 text{м})
(M=7,36cdot 10^{22} text{кг})
__________________
(v_1, v_2-?)
(frac{v_{text{1З}}}{v_{text{1Л}}}, frac{v_{text{2З}}}{v_{text{2Л}}}-?)

Первая и вторая космические скорости $$ v_1=sqrt{frac{GM}{R}}, v_2=sqrt{frac{2GM}{R}}=sqrt{2}v_1 $$ Получаем: begin{gather*} v_1=sqrt{frac{6,67cdot 10^{-11}cdot 7,36cdot 10^{22}}{1,74cdot 10^6}}approx sqrt{2,82cdot 10^6}approx\[6pt] approx 1,68cdot 10^3frac{text{м}}{text{с}}=1,68frac{text{км}}{text{с}}\[6pt] v_2=sqrt{2}cdot 1,68approx 2,37frac{text{км}}{text{с}} end{gather*} Сравним со скоростями для Земли: begin{gather*} frac{v_{text{1З}}}{v_{text{1Л}}}=frac{7,92}{1,68}approx 4,7 text{раз}, frac{v_{text{2З}}}{v_{text{2Л}}}=frac{sqrt{2}v_{text{1З}}}{sqrt{2}v_{text{1Л}}}=frac{v_{text{1З}}}{v_{text{1Л}}}approx 4,7 text{раз} end{gather*} Космические скорости для Луны в 4,7 раз меньше земных.
Ответ: 1,68 км/с; 2,37 км/с; в 4,7 раз меньше

Задача 5*. Рассчитайте радиус геостационарной орбиты спутника и высоту такого спутника над Землей. Масса Земли (M_oplus=5,97cdot 10^{24} text{кг}), радиус Земли (R_oplus =6400 text{км}).
Ответ запишите в км.

Дано:
(M_oplus=5,97cdot 10^{24} text{кг})
(T=24 text{ч}=8,64cdot 10^4 text{с})
(R_oplus =6400 text{км}=6,4cdot 10^6 text{м})
__________________
(R, h-?)

На геостационарной орбите спутник «зависает» над Землей, его линейная скорость равна отношению длины окружности орбиты к периоду вращения (сутки): begin{gather*} v=frac{2pi R}{T}=sqrt{frac{GM_oplus}{R}}Rightarrow frac{4pi ^2R^2}{T^2}=frac{GM_oplus}{R}Rightarrow R^3=frac{GM_oplus T^2}{4pi ^2}\[6pt] R=sqrt[{3}]{frac{GMT^2}{4pi ^2}} end{gather*} Получаем: begin{gather*} R=sqrt[{3}]{frac{6,67cdot 10^{-11}cdot 5,97cdot 10^{24}cdot (8,64cdot 10^4)^2}{4pi ^2}}approx sqrt[{3}]{75,3cdot 10^{-11+24+8}}approx\[6pt] approx 4,22cdot 10^7 (text{м})=42200 (text{км})\[6pt] h=R-R_oplus=42200-6400=35800 (text{км}) end{gather*} Ответ: 42200 км; 35800 км

Понравилась статья? Поделить с друзьями:
  • Как в презентации найти конструктор
  • Как исправить ошибку с battleye в unturned
  • Как найти клиентов для покупки авто
  • Если ты абьюзер как это исправить
  • Как найти число в массиве эксель